

2017 Highlights

Improved performance on small SPECTOR series injectors

New benchmarks for plasma life, temperatures

2 field plasma compression tests completed

Big improvement in plasma stability during compression

New, scalable driver servo control system developed

New large injector, PI3, constructed

Launch of integrated prototype program

General Fusion

Founded in 2002 by Dr. Michel Laberge

Based in Vancouver, Canada

75 employees

Focused on building a practical, commercially viable path to fusion energy

Approaches to Fusion

Magnetic Confinement

Plasma confinement using large magnetic coils

Low density:

~10¹⁴ ions/cm³

Continuous operation

Magnetized Target Fusion

Combination of compression and magnetic confinement

Medium density:

~10¹⁷ ions/cm³

Pulsed: ~1 ms

Inertial Confinement

Very fast compression using high power lasers or ion beams

Very high density:

~10²⁶ ions/cm³

Pulsed: <1 ns

Plasma formed by CHI into liquid metal cavity

• Temperature: ~500 eV

• Density: ~1E20 m⁻³

Piston array compression

~10:1 radial compression

• 20 ms compression time

Liquid Metal Liner serves as:

First Wall

Neutron Blanket

Tritium Breeding

System Coolant

Radiation Shielding

Small Plasma Injectors

Built on a reduced scale to reduce iteration time and expense

Used in plasma compression experiments

16 small injectors constructed in 8 years

Allow a variety of geometries and overall safety factor (q) to be explored

MRT

PROSPECTOR

SPECTOR
Spherical Compact
Toroid

SPECTOR in lab with diagnostics

SPECTOR injector

Laboratory SPECTOR System

- Magnetic pick-up probes
- Interferometers
- Visible light photodiodes

- X-ray photodiodes
- X-ray phosphor camera
- Visible Spectrometers

- Multi-point Thomson scattering
- Multi-chord FIR Polarimeter
- VUV Spectrometer

2017 SPECTOR Performance Benchmark

SPECTOR Electron Temperature

Thomson scattering and AXUV photodiode array indicate electron temperatures ~300 eV

GF Prototype: 2021

Plasma Formation onto Liquid Metal

MiniSL!C: Operating Now

No Plasma
Pulsed Current
Pulsed Magnetic Field
Liquid Lithium Free Surface

SL!C: 2018

CHI Plasma Formation Liquid Lithium Free Surface

Diagnostics:

Fast Camera
Rogowski Coils
Mirnov Coils
X-ray spectroscopy
Thomson Scattering
Interferometer

Rotation to Equator

Large Plasma Injectors

Injectors built to a similar scale as expected for power plant

PI1 and PI2 demonstrated magnetic compression heating of a spheromak to over 300 eV and 3.2T magnetic fields

PI3 first plasma last week

PI1 PI2 PI3

PI3 large injector

Spherical tokamak plasma target

10 MJ pulsed power supply

Vessel inner radius 1 m

Major radius R 0.6 - 0.7 m

Minor radius a 0.3 - 0.4 m

Poloidal flux Ψ_{CT} 0.15 – 0.3 Wb

Plasma current $I_n = 0.3 - 0.6 \text{ MA}$

Shaft current I_s 1.0 - 1.3 MA

Plasma density n_e $2x10^{19} - 2x10^{20} \text{ m}^{-3}$

Temperature $T_e \sim T_i$ 100 – 500 eV

Beta β 2% - 8 %

All PCS Shots Normalized to B_z at Wall Move

Summary of recent PCS shots:

PCS13: first shot with new spherical geometry.

PCS14: Higher q, ramped shaft current, shot later to achieve a peaked lambda profile:

PCS15: Even higher q, shot earlier (motivated by hot ions), higher formation power.

Piston Driver Scalable Servo

All of the models we shot had a range of 274 µs
The Servo shots had a range of +5.0/-2.0 µs from their model

Integrated Prototype

Goals

Demonstrate, at scale, that fusion conditions can be achieved using General Fusion's MTF technology

Strategy:

- Optimize performance with flexible operating envelope
- Modularize systems to permit rapid innovation

Key Features and Specifications:

- 3 meter diameter plasma
- 15-25 MJ of plasma formation bank
- Liquid lithium
- 3.5 ms compression time
- Up to 10:1 radial compression ratio
- 1 compression shot/day operating rate

QUESTIONS?

CLEAN ENERGY. EVERYWHERE. FOREVER.

general**fusion**

in

Twitter @generalfusion

Instagram @generalfusion

LinkedIn general-fusion