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Overview

 The optimized stellarator W7-X

« Planned operation phases

« Plasma-facing components and magnetic topology in OP1.1

« Examples of physics results in OP1.1 and international participation
« Plans for OP1.2

¢ Summary




Tokamak and stellarator PP

* twisted magnetic field * twisted magnetic field
» strong toroidal current in plasma - weak, self-generated toroidal
current

excellent plasma confinement to be
proven: computer optimization

 plasma instabilities require control needed

* excellent plasma confinement

- steady-state operation requires strong * Free of major disruptions

current drive - steady-state

3 First physics results from W7-X



50 keV I1on In a classical stellarator W

950 keV D-ion in a B=2.5 T R=5 m classical stellarator — scales to a-particle in reactor




W7-X magnetic field optimization PP

50 keV D-ion in W7-X — scales to a-particle in HELIAS reactor




Plasma volume 30 m3
Magnetic field 2.5 T (up to 3 T)

Superconducting coils 70
Magnetic field energy 600 MJ
Cold mass 435 t

Total mass 735 t

First physics results from W7-X



Wendelstein 7-X operational phases E

OP 1.1: 2015/ 2016
Limiter configuration
P<5MW->43MW
fPdt<2MJ->4MJ
Touse ~18->6s

OP 1.2: 2017 / 2018

Uncooled divertor configuration
P~10 MW

[P dt<80MJ
Touse ~ 10 s at 8 MW
(... 60 s @ reduced power)

OP 2: 2020 ...

Steady-state operation

Actively cooled divertor configuration
P., ~ 10 MW

Pouse ~ 20 MW (10 s)

Technical limit 30 minutes @ 10 MW

T. Sunn Pedersen

FESAC meeting 2017



PFCs and topology for OP1.1 PP

« 5 shaped graphite limiters

» Designed to intersect >99% of the
convective plasma heat loads

* The rest of the PFCs shielded from
direct convective plasma loads

- Magnetic configuration without edge islands
ensures “sharp edge”

Internal 5/6 island chain (+) serves as
marker for the topology, indirectly confirming
the absence of near-shadow island chains
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Confirming the topology




 As reported earlier2t, the expected
nested flux surface topology has
been verified in great detail,
including the intrinsic 5/6 island
chain

* There were some deviations but all
small

» The configuration chosen for OP1.1
plasma operation was particularly
robust against field errors.

« With a different configuration®d we
confirmed the topology to an
accuracy of better than 1:100000

aAPS-DPP meeting San Jose, CA (2016)
bM. Otte et al., PPCF 58, 064003 (2016)

¢S. Lazerson et al., Nucl, Fusion (2016)
dT. Sunn Pedersen et al., Nature Comm. (2016)




All goals of OP 1.1 were attained ... W

OP 1.1 priorities: Integral commissioning and first plasma operation

1.

Integral commissioning of all systems needed
for successful plasma operation

Existence of closed flux surfaces all the way  / Pecry = 4.3 MW

to the limiter (at B=2.5T) AMJ/6s
Measurement and adequate reduction of B, (\/)

field errors

Reliable ECRH plasma startup scenario in He v T, ~10keV
Basic ECRH interlocks and safe operation v Ti<2keV
scenarios: /[P dt <2 MJ

Basic impurity content monitoring v He < 8-10"°m?3
Central T, > 1 keV atn, >5-10"® m= in at ‘/ H=<2.310"m"

least 10 discharges in He

Confirmation of optimization goals of W7-X will be done in later operation phases

T. Sunn Pedersen FESAC meeting February 2017
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Success of OP 1.1: A collaborative effort W

/ Contributors to conducted proposals \

P703/774 528/774

(M i Va7 ]

J}gh!gm CONSORZIO RFX C-emol;D
Zl O ., & Tu/ B
(' EI.

. EU =0 0 O @ alanar b
m US A! DeerL Q) W @ SKIT
& Py ﬁ WISCONSIN Karsruher nstitut 0r Technologie
w |IPP V 314/774 L) - LosAlamos Universitit Stuttgart

inner circle: “first proponent’

k outer circle: contributor /

« 402 out of 843 plasma experiments (discharges) with physics proposals

« 774 proposals conducted in the 402 physics programs

T. Sunn Pedersen FESAC meeting, Feb. 2017



US Construction Contributions

US contributions to the device

 development of a lifting device for current leads (ORNL)
* support in structural engineering and metrology (PPPL and ORNL)

* design, engineering and manufacturing of trim coils (PPPL)
* design, engineering and manufacturing of power supplies (PPPL)

» development and design of scraper element (PPPL and ORNL)
* design and manufacturing of TDU scraper element (PPPL)

successful engineering collaboration ,,across the pond“ with the help of
common tools, video links, frequent visits

4

Success story for international fusion research collaborations




US science contributions

diagnostics instruments for OP 1.1 and OP 1.2

 X-ray imaging crystal spectrometer XICS (PPPL)

* high-resolution infrared and visible camera system (LANL)

* Penning gauge with optical observation (U Wisconsin)

- filterscope array (ORNL)

 phase contrast imaging (MIT)

- exhaust spectroscopy (U Wisconsin)

concept studies and developments

» pellet injection - mass detectors, guide tubes (ORNL)

* gas puff imaging (MIT)

* heavy ion beam probe (Xanthos)

program participation

* program planning and device commissioning (Neilson, PPPL)
» magnetic field and equilibrium (Lazerson, PPPL, Maurer, Auburn U)
* various researchers on site for OP 1.1 and OP 1.2




Plasma generation (early phase) "
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T. Sunn Pedersen

FESAC Meeting, February 2017
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Measurement of basic plasma parameters W
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» Low densities and electron heating by ECRH resulted in T, >> T,

* Results in outward pointing electric field in the core giving so-called Core
Electron Root Confinement (CERC) - more on that later

FESAC meeting, Feb. 2017



Characterization of energy confinement W
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Demonstration of O2-ECRH W

. oA . . _ 800
Proof-of-principle for high Startup with 2

density operation with ECRH in 400 /}W\:*] gyrotrons in X-mode
i

future operation phases
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ST’ 4
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FESAC meeting, Feb. 2017
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Limiter heat load patterns
and a slightly altered
configuration




Pattern of connection lengths on limiters
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Heat load patterns in OP1.1 agree with predictions PP
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G. Wurden, LANL, USA

F. Effenberg et al., U. Wisc. USA l
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“De-optimized” configuration for OP1.1 PP

This configuration offered:

« Shift of 5/6 island chain inward, away from neutral
source region:
* (Itis so small now that it's not visible on the
Poincare plot)
« Expected particle confinement time increase
confirmed [collab, U. Wisconsin]
« Slightly higher iota
» Shift of heat loads on the limiters
* Neoclassics de-optimized: €4 factor of 2 higher by
| | | | increasing mirror term
59 5.6 6.0 6.4 « g% is a measure of Io§ses due to bad orbits
— almost a factor of 3 naively expected
R» e * More “risky” scrape-off layer topology: 5/5 island
chain comes closer [was not a problem]

22



Heat load patterns in OP1.1 agree with predictions PP
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Heat load patterns in OP1.1 agree with predictions PP
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Confinement time with “de-optimized” configuration PP
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Essentially no change in confinement, as expected

Why expected? Because of electric field effects....
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Strong electric fields in stellarators: CNT PP

This brings me back to the good old CNT days...
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Particle drifts out — CNT is not an optimized stellarator Add a strong radial electric field: Particle stays in

Experimental findings in CNT: 20 ms initially2, then up to 320 msP

Conclusion: Radial electric fields can significantly heal bad stellarator orbits and therefore
effectively mask any ¢+ dependences that there would have been otherwise

aJ. P. Kremer et al. , PRL 97, p. 095003 (2006),
bP. W. Brenner et al., CPP 50 p.678 (2010)
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Electric fields in stellarators PP

How large of a role does the bulk ExB drift play relative to the magnetic drifts?

Vea | Vo/B _ qe

P~

Vug (W.VB/ qu) W,

Pure-electron plasma: Dominant (factor of 10-1000, CNT: 50)
Thermal particles in a quasineutral plasma: Depends.. (0.2-5)

Set by ambipolarity
OP1.1 T,>>T, leads to relatively strong role in core - CERC

Fusion a’s: Negligible (~35 keV/3.5 MeV~0.01)
So, the orbit-healing effects of E, is going to be smaller in later operation phases, and cannot

“fix” a-confinement in a future reactor
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Turbulence
Filaments




3D turbulence in W7-X PP

« Structures are highly
field-aligned-
filamentary

 Rotate and pulsate

Courtesy of Pavlos Xanthopoulos, ST




Filaments are visible when plasma is “cold” W

G. Kocsis et al., Wigner
RCP, Hungary

1\

350400450500550600650

We have a diagnostic for
that:
Photron SA5 camera

« 46.5kframe/s @

384x352 pixels

Field lines in the camera
view shown here
Visualizations can be
induced with nitrogen
injections from He-beam
diagnostic
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2.5 ms of dynamics just inside the LCFS PP

« This is radiation on
closed flux surfaces
 Filaments are clearly
seen
* They rotate clockwise
In this view
« Assuming ExB drift
* Inward pointing
(negative) E-field
 Expected at
T.~T,at the edge
of the plasma

G. Kocsis et al., Wigner RCP, Hungary
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2.5 ms of dynamics just outside the LCFS PP

« This is radiation in the SOL
induced by a nitrogen puff
«  Counter-clockwise rotation
initially at least!
« Assuming ExB drift:
*  Qutward pointing
(positive) E-field
« Not surprising on open

field lines

G. Kocsis et al., Wigner RCP, Hungary
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Looking forward to OP1.2

First physics results from W7-X



Wendelstein 7-X heating systems

ICRH (spare) )

T. Sunn Pedersen FESAC meeting Feb 2017



Development of heating systems

ECRH
steady state
140 GHz
25T

NBI

pulsed

55 keV (H)
60 keV (D)

ICRH
pulsed
25 — 38 MHz

5 MW
X2

LFS launch
(front steering)

9 MW

X2 /02

LFS & HFS launch
(front & remote
steering)

7 MW (H)

2 MW
3He, H minority

Upgrade of power
supplies

9 MW

X2/ 02/ 0OXB
LFS & HFS launch
(front & remote
steering)

10 MW (D)
7 MW(H)

4 MW
3He, H minority

T. Sunn Pedersen

FESAC meeting Feb 2017

35



Maijor topics for OP1.2 "

Optimization of confinement of W7-X ion-regime (x, 1/, ~ €c°%)
—Requires high heating power and high density

— Strong coupling of ions and electrons

—Involved issues: Fuelling (pellet injection), density limit

Investigation of confinement and core transport
—Anomalous versus neoclassical transport

—Role of neoclassical effects (e.g. thermo-diffusion)
—Role of radial electric field

—Role of heating method and deposition profile
—Tailoring of plasma temperature, density and -profiles

Heating scenarios, current drive and fast ion production and confinement
—High density heating and current drive with ECRH (O2-heating beyond X2 cut-«
—lon heating with NBI

—Fast ion production with NBl and ICRH

—Validation of W7-X drift optimization, fast ion driven instabilities (long-term)

T. Sunn Pedersen FESAC meeting Feb 2017 36



Up-down asymmetry in divertor heat loads

Up-down asymmetries of up to a factor of two
in the divertor heat and particle fluxes have
been observed in tokamaks and stellarators

Effect reverses sign when the magnetic field
changes sign

« Guiding-center drift effect (ExB or
magnetic drift)

We will reverse the magnetic field towards _
the end of OP1.2b E 9
N

We have particularly well-diagnosed divertors

0.2

in HM 30 and 51 (one up, one down) -0.2]
By applying an n=0 (ie radial) magnetic field 0
with the trim coils, we can move the flux

surfaces (and therefore the plasma) about 1 -0,

cm vertically - roughly the SOL width

Collaboration with Sam Lazerson, PPPL (USA)

I
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High-pressure fast divertor gas injection system

» Multiple functions

» Fast fuelling (H,) in divertor region
(msec time scale)

 He-beam injection as He-beam
divertor diagnostic

« Firstresults in OP1.1 -
improved design for OP1.2

* Ar, Ne, CH,, N, injection for edge
radiative cooling in OP1.2

« Multiple locations

« OP1.2: HM 30 and 51
(installation complete Dec 2016)

* (Up-down symmetric)
« OP2: All 10 divertor units

38



Pellet injection system(s)




Pellet injection system OP1.2 PP

OP 1.2:

« Collaboration IPP Garching: former AUG pellet
injection system: operational

» Collaboration ORNL, USA: Microwave cavity in-
flight pellet mass detector: operational

+ Pellet size: 2 mm AN o

« Pellet speed: 250 m/s
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Pellet injection system OP2 PP

OP 2:
» Collaboration NIFS, Japan and ORNL, USA
» First hardware purchases now in Japan and Germany
» Exact scope of ORNL part is not yet clear
 Pellet size: 3 mm x 3 mm
« Density increase per pellet ~3*101° m-3
» Pellet speed: 600 m/s
» Repetition rate: 10 Hz for 30 minutes
« Low field side injection
« Verification in OP1.2 that LFS injection works well
» If not, a plan B for HFS injection will be challenging given pipe work
for water cooling




4 Heating and fueling systems

(1 upgrade, 3 new) plus 2 associated

safety diagnostics

12 Must-have diagnostics (A)

(2 new, 10 upgrades/exchanges)

23 Should-have diagnostics (B)
11 new, 12 upgrades/exchanges

11 Might-get diagnostics (C)
5 new, 6 upgrades/exchanges
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Summary PP

« Successful first campaign produced many interesting and encouraging results
« Limiter operation provided a comparison basis for future divertor operation
* In general, good agreement between expected and observed phenomena

« Data are still being analyzed...

« OP1.2 will be very important for the preparation of OP2, in particular with
respect to divertor operation

« New tools are/will be ready for exciting physics program in OP1.2, e.g.:
> 15 new diagnostics
« TDU scraper elements (PPPL/ORNL coll.): now at IPP
« Two OP1.2 IR endoscopes: now at IPP
* Pellet injection
* More power: NBI (7 MW), ICRH (2 MW) , ECRH ( now up to 9 MW)
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