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AToM is 1 of 9 SciDAC-4 partnerships working 
to address modeling needs of US MFE program

•  AToM focus is 
whole-device 
modeling (WDM): 
 
assemblies of 
physics components 
that provide a 
sufficiently 
comprehensive 
integrated simulation 
of the plasma

•  components
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•  AToM focus is whole-device modeling (WDM): 

assemblies of physics components that provide a sufficiently 
comprehensive integrated simulation of the plasma

•  AToM guiding philosophy
–  take a bottoms-up, collaborative  

approach that focuses on 
–  supporting, leveraging, and integrating  

the wide spectrum of existing research  
activities throughout the US fusion  
community, 

–  to grow and improve a WDM capability  
that has broad community support and  
buy-in.

–  In practice, this means developing flexible software environment and 
workflows to couple existing and in-development physics components
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AToM’s scope and vision extends from  
current-day devices to future reactor facilities
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Present-day  
experiments

Support 
ITER

Future reactor  
design

•  Validate existing WDM  
capabilities

•  Identify modeling gaps
•  Drive new development

•  Test WDM capabilities 
in burning plasma  
conditions

•  Optimize ITER operation  
scenarios

•  Examine how to best 
optimize devices with  
varying goals and  
missions



Current AToM modeling capability enables coupled 
core-edge-SOL (CESOL) profile predictions 

•  Future research directions: 
–  Self-consistent impurity transport from wall to 

magnetic axis
–  Implementing validated theory-based scrape-off 

layer (SOL) transport models
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AToM supports flexible workflows based on 
coupling of multiple physics components
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•  CESOL prediction requires coupling 15 physics components, 
executed on NERSC Edison Cray XC30 machine



AToM couples IPS and OMFIT computing 
frameworks and effectively exploits their synergy
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AToM modeling capabilities ready to support 
ITER research needs 

•  Example: modeling an ITER 
steady-state hybrid scenario

•  AToM’s OMFIT framework 
includes full support for ITER 
IMAS data model
–  Enables access to ITER 

reference scenarios

•  Future work: apply AToM 
capabilities to key ITER 
startup questions (e.g. H/He, 
half field/current operations)
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OMFIT STEP module supports discharge design 
and optimization for current and future machines
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AToM workflows will provide practical tools to design 
and optimize future reactors

•  Combine efficient, validated tools with HPC resources to 
explore parameter space  
and optimize

•  Example: AToM tools used  
to identify target operating  
scenarios for compact  
advanced tokamak DEMO 
(C-AT DEMO)   
 
 
(R. J. Buttery et al, 2018 IAEA FEC)
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Scalings of C-AT DEMO Pnet with 
physics parameters and PH/CD



Practical integrated studies require hierarchy of 
fast, efficient, and accurate physics components

Leadership-class computing
highest fidelity simulations

Calibrate

Reduced models for validation

Machine-learning models for
optimization & real-time control

Train

One-off heroic simulation

Inform

Inform

Physics
Validation

Physics
Application

Physics
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Core transport components provide template 
for future physics component development

•  Nonlinear gyrokinetic simulations yield highest fidelity transport 
predictions but require 103 – 107 core-hours to simulate small 
fraction of plasma volume & duration

•  Multiscale simulations with hyperfine  
spatial resolution required to  
accurately predict transport in some  
DIII-D and Alcator C-Mod plasmas  
with dominant electron heating…

•  …but require 20+ million  
core-hours to simulate a small  
fraction of plasma volume for a  
few milliseconds on current  
computing platforms
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Core transport components provide template 
for future physics component development

•  WDM predictions effectively require hundreds or 
more of such simulations for convergence

–  not currently practical

•  Resolve bottleneck via reduced models that 
combine physics understanding and high-fidelity 
simulation results to make equivalent predictions 
in core-seconds

•  Reduced models appear to work reasonably well 
for many current-day experiments, but questions 
remain on extrapolating to future scenarios

•  Improving and expanding reduced model 
capabilities requires significant increases in high-
fidelity simulations

–  More parameters at higher resolution
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Core transport components provide template 
for future physics component development

•  Recent optimization work by 
AToM team members suggests a 
10x increase in high-fidelity 
code performance on next-
generation exascale platforms 
is possible

•  Enables scope and scale of new 
high-fidelity simulations to 
improve our reduced models 
and thereby our practical 
predictive modeling 
capabilities
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AToM working to deliver practical, high-fidelity 
whole-device modeling capabilities 

•  Future research areas for AToM include topics such as:
–  Improving reduced model components for areas such as 

core and edge transport
•  Bring “big data” and machine learning tools to bear 

here in addition to traditional approaches
–  Physics studies like wall-to-axis impurity transport and 

response to RF heating
•  Allows us to study variety of tradeoffs (e.g. radiative 

divertor vs. core dilution) and actuators for their control
–  Scenario development for ITER and beyond
–  Development of a validation and future scenario use 

case database to track model development, coordinate 
with other SciDAC-4 centers
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AToM working to deliver practical, high-
fidelity whole-device modeling capabilities 

•  Longer term goal: partnering with other SciDAC centers 
to integrate and improve both high-fidelity and reduced 
model components for:
–  RF heating & current drive (PI: P. Bonoli)
–  energetic particle transport (PI: Z. Lin)
–  plasma edge & (PI: C. S. Chang) 

scrape-off layer physics (PI: D. Hatch)
–  plasma-material interactions (PI: B. Wirth)
–  disruptions (PI: S. Jardin) 

(PI: X. Tang)
–  runaway electrons (PI: D. Brennan)
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Backups
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OMFIT- One Modeling Framework for 
Integrated Tasks
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IPS- Integrated Plasma Simulator

•  Python-based HPC component 
framework

•  Components are python-
wrapped binaries

•  Framework runs in a single 
batch allocation, manages 
resources for components

•  Components launch task on 
compute nodes using standard 
system mechanisms

•  PlasmaState holds primary data 
for exchange

•  Reader-makes-right model
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AToM has established a reliable infrastructure to 
generate machine-learning based reduced models
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Neural-net versions of TGLF and EPED achieve 
significant speed-up while maintain good fidelity
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EPED1-NN trained on database 
of 20,000 EPED1 runs for DIII-D, 
KSTAR, JET, ITER, CFETR 
parameters (109 speedup)

TGLF-NN trained (with TENSORFLOW) 
on database of 500,000 cases from 

multi-machine database (105 speedup)
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