The Advanced Tokamak Modeling Environment (AToM) for Fusion Plasmas

Christopher Holland University of California, San Diego

on behalf of the **AToM team**http://scidac.github.io/atom/index.html

Presented at the 2018 Fusion Power Associates Meeting December 4-5, Washington, DC

 AToM focus is whole-device modeling (WDM):

assemblies of physics components that provide a sufficiently comprehensive integrated simulation of the plasma

- AToM focus is whole-device modeling (WDM):
 assemblies of physics components that provide a sufficiently comprehensive integrated simulation of the plasma
- AToM guiding philosophy
 - take a bottoms-up, collaborative approach that focuses on

AToM focus is whole-device modeling (WDM):
assemblies of physics components that provide a sufficiently
comprehensive integrated simulation of the plasma

AToM guiding philosophy

- take a bottoms-up, collaborative approach that focuses on
- supporting, leveraging, and integrating the wide spectrum of existing research activities throughout the US fusion community

AToM focus is whole-device modeling (WDM):
assemblies of physics components that provide a sufficiently
comprehensive integrated simulation of the plasma

AToM guiding philosophy

- take a bottoms-up, collaborative approach that focuses on
- supporting, leveraging, and integrating the wide spectrum of existing research activities throughout the US fusion community,
- to grow and improve a WDM capability that has broad community support and buy-in.

AToM focus is whole-device modeling (WDM):
assemblies of physics components that provide a sufficiently
comprehensive integrated simulation of the plasma

AToM guiding philosophy

- take a bottoms-up, collaborative approach that focuses on
- supporting, leveraging, and integrating the wide spectrum of existing research activities throughout the US fusion community,
- to grow and improve a WDM capability that has broad community support and buy-in.

 In practice, this means developing flexible software environment and workflows to couple existing and in-development physics components

AToM's scope and vision extends from current-day devices to future reactor facilities

Present-day experiments

Support ITER

Future reactor design

- Validate existing WDM capabilities
- Identify modeling gaps
- Drive new development
- Test WDM capabilities in burning plasma conditions
- Optimize ITER operation scenarios
- Examine how to best optimize devices with varying goals and missions

Current AToM modeling capability enables coupled core-edge-SOL (CESOL) profile predictions

- Self-consistent impurity transport from wall to magnetic axis
- Implementing validated theory-based scrape-off layer (SOL) transport models

J.M. Park et al, 2018 IAEA FEC

C2/GTNEUT

AToM supports flexible workflows based on coupling of multiple physics components

 CESOL prediction requires coupling 15 physics components, executed on NERSC Edison Cray XC30 machine

AToM couples IPS and OMFIT computing frameworks and effectively exploits their synergy

AToM modeling capabilities ready to support ITER research needs

- **Example**: modeling an ITER steady-state hybrid scenario
- AToM's OMFIT framework includes full support for ITER IMAS data model
 - Enables access to ITER reference scenarios
- Future work: apply AToM capabilities to key ITER startup questions (e.g. H/He, half field/current operations)

C. C. Petty et al., Nucl. Fusion 2017

OMFIT STEP module supports discharge design and optimization for current and future machines

Predicted ITER steady-state Q ≥ 5 scenario with day-1 heating

(J. McClenaghan *et al*, 2018 IAEA FEC)

AToM workflows will provide practical tools to design and optimize future reactors

 Combine efficient, validated tools with HPC resources to explore parameter space

and optimize

 Example: AToM tools used to identify target operating scenarios for compact advanced tokamak DEMO (C-AT DEMO)

(R. J. Buttery et al, 2018 IAEA FEC)

Scalings of C-AT DEMO P_{net} with physics parameters and $P_{H/CD}$

Practical integrated studies require hierarchy of fast, efficient, and accurate physics components

 Nonlinear gyrokinetic simulations yield highest fidelity transport predictions but require 10³ – 10⁷ core-hours to simulate small fraction of plasma volume & duration Simulated T_e fluctuations for a

DIII-D discharge

N. T. Howard *et al.*, Phys. Plasmas 2015 C. Holland *et al.*, Nucl. Fusion 2017

 Nonlinear gyrokinetic simulations yield highest fidelity transport predictions but require 10³ – 10⁷ core-hours to simulate small fraction of plasma volume & duration Simulated T_e fluctuations for a

 Multiscale simulations with hyperfine spatial resolution required to accurately predict transport in some DIII-D and Alcator C-Mod plasmas with dominant electron heating...

N. T. Howard *et al.*, Phys. Plasmas 2015 C. Holland *et al.*, Nucl. Fusion 2017

 Nonlinear gyrokinetic simulations yield highest fidelity transport predictions but require 10³ – 10⁷ core-hours to simulate small fraction of plasma volume & duration Simulated T_e fluctuations for a

 Multiscale simulations with hyperfine spatial resolution required to accurately predict transport in some DIII-D and Alcator C-Mod plasmas with dominant electron heating...

...but require 20+ million
 core-hours to simulate a small
 fraction of plasma volume for a
 few milliseconds on current
 computing platforms

N. T. Howard *et al.*, Phys. Plasmas 2015 C. Holland *et al.*, Nucl. Fusion 2017

- WDM predictions effectively require hundreds or more of such simulations for convergence
 - not currently practical
- Resolve bottleneck via reduced models that combine physics understanding and high-fidelity simulation results to make equivalent predictions in core-seconds

G. M. Staebler et al, Nucl. Fusion 2017

- WDM predictions effectively require hundreds or more of such simulations for convergence
 - not currently practical
- Resolve bottleneck via reduced models that combine physics understanding and high-fidelity simulation results to make equivalent predictions in core-seconds
- Reduced models appear to work reasonably well for many current-day experiments, but questions remain on extrapolating to future scenarios

- WDM predictions effectively require hundreds or more of such simulations for convergence
 - not currently practical
- Resolve bottleneck via reduced models that combine physics understanding and high-fidelity simulation results to make equivalent predictions in core-seconds
- Reduced models appear to work reasonably well for many current-day experiments, but questions remain on extrapolating to future scenarios
- Improving and expanding reduced model capabilities requires significant increases in highfidelity simulations
 - More parameters at higher resolution

G. M. Staebler et al, Nucl. Fusion 2017

- Recent optimization work by AToM team members suggests a 10x increase in high-fidelity code performance on nextgeneration exascale platforms is possible
- Enables scope and scale of new high-fidelity simulations to improve our reduced models and thereby our practical predictive modeling capabilities

- Future research areas for AToM include topics such as:
 - Improving reduced model components for areas such as core and edge transport
 - Bring "big data" and machine learning tools to bear here in addition to traditional approaches

- Future research areas for AToM include topics such as:
 - Improving reduced model components for areas such as core and edge transport
 - Bring "big data" and machine learning tools to bear here in addition to traditional approaches
 - Physics studies like wall-to-axis impurity transport and response to RF heating
 - Allows us to study variety of tradeoffs (e.g. radiative divertor vs. core dilution) and actuators for their control

- Future research areas for AToM include topics such as:
 - Improving reduced model components for areas such as core and edge transport
 - Bring "big data" and machine learning tools to bear here in addition to traditional approaches
 - Physics studies like wall-to-axis impurity transport and response to RF heating
 - Allows us to study variety of tradeoffs (e.g. radiative divertor vs. core dilution) and actuators for their control
 - Scenario development for ITER and beyond

- Future research areas for AToM include topics such as:
 - Improving reduced model components for areas such as core and edge transport
 - Bring "big data" and machine learning tools to bear here in addition to traditional approaches
 - Physics studies like wall-to-axis impurity transport and response to RF heating
 - Allows us to study variety of tradeoffs (e.g. radiative divertor vs. core dilution) and actuators for their control
 - Scenario development for ITER and beyond
 - Development of a validation and future scenario use case database to track model development, coordinate with other SciDAC-4 centers

 Longer term goal: partnering with other SciDAC centers to integrate and improve both high-fidelity and reduced model components for:

RF heating & current drive (PI: P. Bonoli)

– energetic particle transport (PI: Z. Lin)

plasma edge & (PI: C. S. Chang)scrape-off layer physics (PI: D. Hatch)

plasma-material interactions (PI: B. Wirth)

disruptions(PI: S. Jardin)(PI: X. Tang)

runaway electrons (PI: D. Brennan)

Backups

OMFIT- One Modeling Framework for Integrated Tasks

IPS- Integrated Plasma Simulator

- Python-based HPC component framework
- Components are pythonwrapped binaries
- Framework runs in a single batch allocation, manages resources for components
- Components launch task on compute nodes using standard system mechanisms
- PlasmaState holds primary data for exchange
- Reader-makes-right model

AToM has established a reliable infrastructure to generate machine-learning based reduced models

Neural-net versions of TGLF and EPED achieve significant speed-up while maintain good fidelity

EPED1-NN trained on database of 20,000 EPED1 runs for DIII-D, KSTAR, JET, ITER, CFETR parameters (109 speedup)

TGLF-NN trained (with TENSORFLOW) on database of 500,000 cases from multi-machine database (10⁵ speedup)

O. Meneghini et al, Nucl. Fusion 2017

