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TAE Progress towards Fusion
Evolutionary sequence of platforms

TAE's current

Major development platforms integrate then machine
best design

« incremental bases for rapid innovation

Copernicus entering phased sequence of
reactor performance experiments
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Norman Program



Norman Goals
Explore beam driven FRCs at 10x stored energy compared to C-2U

* Principal physics focus on
« scrape off layer and divertor behavior
* ramp-up characteristics
« transport regimes

« Specific programmatic goals

« demonstrate ramp-up and sustainment for times well in excess of
characteristic confinement and wall times

« explore energy confinement scaling over broad range of parameters

« core and edge confinement scaling and coupling
« consolidated picture between theory, simulation and experiment

« develop and demonstrate first order active plasma control
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NORMAN — TAE’s 5t Generation Erd

Inner divertors:

2 Ml/s pumping
Upgraded Neutral Beams:
21 MW, 30 ms :

Plasma-guns and biasing
electrodes (in both inner
and end divertors)

New confinement
vessel, skin time <3 ms

Magnetic Field 0.1-0.3T
e riet systern for Plasma dimensions —r_, L, 0.4,3m
field ramp & active control Density -n 3x1019m3
e
Upgraded formation sections: Temperature £4 Ti 'Te ]_2, 0.2-1 keV

~15 mWob trapped flux



Norman - Neutral Beam System

Norman Norman

Beam Energy, keV 15 15 15/15-40
Total Power 10 13 21

# of Injectors 6 8 4[4
Pulse, ms 8 30 30
lon current per source, A 130 130 130

e Centered/angled/tangential neutral-beam injection

* angle adjustable in range of 15°-25°

* injection in ion-diamagnetic (co-current) direction
* High current with low/tunable beam energy

* reduces peripheral fast-ion losses

* increases core heating / effective current drive

® * rapidly establishes dominant fast-ion pressure for ramp-up
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Norman Wall Conditioning/Pumping Systems
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Transfer to Inner Divertor Control
Flared magnetic fields provide thermal insulation
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Experimental Prog



Norman Lifetime and Initial Temperature Trends

* FRC performance increase with vacuum/wall conditioning
* Total temperature (ion+electron) consistently increased - early T,o; up to 2 keV
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Optimization towards Inner Divertor Control (2/2)

Effects of edge biasing, and flaring divertor fields #104989: Edge biasing from outer
/ divertors (C-2U like) - Phase 1
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Comparison between Operating Conditions

Outer divertor biasing (C-2U like) Inner divertor w/ flaring, no biasing Inner divertor w/ flaring & biasing
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First Efforts towards Active Feedback Control

* Flux-conserver emulation studies

* Active current control of EQ and
mirror coils

* Further control flexibility with
trim coils to come soon
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Summary of Progress on Norman

Key Engineering Accomplishments and Status

* Majority of Norman constructed in <1 year (including C-2U dismantle)

« Significantly improved system reliability and functionality - over 98% uptime
 Tunable neutral beam upgrade completed

Key Physics Accomplishments and Status

* Robust FRC formation and translation

« Much improved initial FRCs - increased size, thermal energy and temperature
« Successfully (re)produced long-lived FRCs (C-2U like)

 Improved FRC performance with flaring divertor magnetic fields

« Steady progress towards active feedback control, transitioning divertor control,
beam power/tunability upgrade
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2019 Preview and



Post Norman Milestone

Basic proof of scientific feasibility established, meaning

* Transport scaling established for collisionless regime

« Macroscopically stable operation

« Active feedback control established and demonstrated
 Heating and current drive established and demonstrated

- Open field line/SOL/divertor thermal insulation demonstrated
Overall system integration principles and control established

Norman to become user facility post milestone

tae"’
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Copernicus - Reactor Plasma Platform

Design under study

* 10+ keV ion temperature goal

» Super-conducting vs resistive coils

« Hydrogen only operation

Budget and timing
« S500+ MM cap-ex estimate
» Break ground around early 2020

« Commissioning/early ops 2024

tae"’
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Beyond Fusion
Spin-off technologies



BNCT technology

A step change in treatment of multi-centric and inoperable cancers

HOW BNCT WORKS

IV-based vector drug delivers B0 to tumor cell

B10 captures neutrons from TAE source

> 3,000x higher neutron absorption than any other
element in human body

Reaction products only kill tumor cell while sparing

neighboring healthy cells

NEUTRON

HEALTHY TISSUE

CANCER CELL

\;M:PH

A PARTICLE

WHY IT MATTERS
* BNCT cancer killing efficacy 3x X-ray and proton
treatments

* Much less collateral tissue damage due to
biochemical (vs. mechanical) targeting

» Fewer side effects and less toxicity
* 30-minute procedure performed once or twice

* Dramatic improvements in survival time and quality
of life

BNCT

X-RAYS

CANCER CELL KILLING EFFICIENCY

HEALTHY TISSUE DAMAGE
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TAE Life Sciences

Spin-off based on TAE neutral
beam injector technology

N . TAE majority owned, but
independent capital and
Mmanagement team

Will eventually offer full solution to
hospitals - drugs to beams

First clinical system sold in October
2017, to deploy in 2019

Growing order book in Asia, US, EU

g e




Disruptive power technology for EVs

ta

Technology derives from 750 MW power supply challenge of Norman

Enables
* higher battery safety and reliability
* better performance and efficiency
* next generation in-wheel motors

Manufacturer agnostic
Architecture scales from cars to buses/trucks

Enables non-traditional parties to enter space -
software defines vehicle characteristics

Commercialization strategy in early execution

Further applications to follow

o

e
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Superior performance of TAE EV drivetrain solution

Performance Parameter Conventional TAE* Comments

Until 30% state of charge of one module

. . 0 * kK (0)

Maximum Range Extension [% ] N/A +30 % (FTP-72 driving cycle)

Power [Power factor of drive cycle]* 1 14 Power factor of the drive cycle to keep

’ max battery temp the same

Efficiency - Reduction in Battery Losses [%]* N/A -7 % Integrated over one drive cycle with low
power factor

Efficiency - Reduction in Inverter Losses [%]* N/A 40 9~ Integrated over one drive cycle with low
power factor

Efficiency - Reduction in Motor Losses [%]* N/A G Ul HEE [ERES £k SEpluet i (1P -

wheel motor company)

) ) One module is taken off for 2 case
Range in Case of Failure [%]* No operations >94 % scenarios: (1) testing of module and (2)
module failure (FTP-72 cycle)

. . Max battery temperature with a high
67 C 51 C power factor drive cycle and 2 modules
with higher thermal resistance

Thermal Management -
Max Battery Temperature [C]*

3 * Simulated with the same battery pack (16.2 kWh) for conventional and TAE technology
ta e( ** Simulation includes TAE solution incorporating super capacitor buffering
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TAE global power technology vision

Automotive & Grid Residential, EV Charging
Grid Stabilization fl Stations & Grid Stabilization

tae¥ e tae”’

Power Technology for ) Power Technology for
) RESIDENTIAL STORAGE

TRANSPORTATION t a e&
l,/l\ J,T Power Technology for J,/l\ J,T \LT

CLEAN FUSION

B & da o [

Energy Motor Solar Residential Energy
Storage Thermal Storage







