39th Annual Meeting of the FPA 2018

First operation of the Wendelstein 7-X stellarator and expectations for the future

Hans-Stephan Bosch

Max-Planck-Institut für Plasmaphysik Greifswald, Germany on behalf of the Wendelstein 7-X Team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Content of the talk

One-team approach for operation:

- The W7-X Team includes researchers and engineers from IPP, Euratom, US (DoE), and Japan.
- It will be published in the Nuclear Fusion paper of the IEAE FEC 2018.

Content of the talk

- 1. Why stellarators?
- 2. Technologies of W7-X
- 3. Performance
- 4. Conclusions and the future

Stellarators

- 1951 invented by Lyman Spitzer jr. in Princeton in a classified report.
- Project Matterhorn
- First stellarator operated in early 1953, as figure-8 or racetrack.
- This picture in 1983, just before donated to the Smithsonian.
- Plasma confinement was rather bad and PPPL "switched" to tokamaks.

Magnetic confinement schemes

Tokamak

currents in coils and plasma

- + good heat isolation
- + highly symmetric
- pulsed operation
- free energy can drive instabilities

Stellarator

current in coils only

- bad heat isolation
- not obviously symmetric
- + steady state operation
- + no current-driven instabilities

Improved Magnetic confinement schemes

Tokamak

currents in coils and plasma

- + good heat isolation
- + highly symmetric
- steady state operation with current drive
- o active control of instabilities

optimized Stellarator

current in coils only

- o good heat isolation
- quasi-symmetric
- + steady state operation
- + no current-driven instabilities

Physics optimisation of stellarators

seven optimisation criteria:

- 1. high quality of vacuum magnetic surfaces
- 2. good finite equilibrium properties @ $<\beta$ > = 5%
- 3. good MHD stability properties @ $<\beta > = 5\%$
- 4. reduced neoclassical transport in 1/v -regime
- 5. small bootstrap current in lmfp-regime
- 6. good collisionless fast particle confinement
- 7. good modular coil feasibility

J. Nührenberg et al.

Several 3d computer codes

- vacuum field and coils
- MHD equilibrium/stability
- neoclassical transport
- Monte Carlo test particle
- edge and divertor

the mission for W7X

- Confirm the numerical optimisation
- Perform high power discharges, steady-state, with an energy confiment like a equivalent tokamak

Content of the talk

- 1. Why stellarators?
- 2. Technologies of W7-X
- 3. Performance

4. conclusions and the future

Major elements and parameters of Wendelstein 7-X

50 non-planar NbTi coils 5 types DC <18 kA

254 ports 120 shapes

113 NbTi bus bars
14 HTSC current leads
about 1000 helium pipes
10 central support ring elements

plasma 30 m³

20 planar NbTi coils 2 types DC <16 kA

plasma vessel 80 m³ 265 m² in-vessel components

4.5 m machine height16 m machine diameter735 t device mass435 t cold mass 3.4 K

cryostat vessel 420 m³ thermal insulation

Construction of W7-X, 4/5 modules in the final position

The island divertor concept

staged approach to the finalization of W7X

2015		2016	2017		2018		2019 2020		2021	
Commissioning	OP 1.1	CP 1.2a		OP 1.2a	CP 1.2b	OP 1.2b	CP 2	c	Comm.	OP 2

Device configuration

OP 1.1

• 5 limiters

OP 1.2a/b

- Test Divertor elements (TDU)
- Baffle elements
- Divertor closures
- Graphite wall tiles
- 2 TDU scraper elements (OP 1.2b)

OP 2

- High-Heat-Flux divertor (steady-state Water cooling)
- Port protection liners
- Cryo pumps (10 units)

P < 5 MW $\int P \, dt \leq 2 \, MJ$ $\tau_{pulse} \sim 1 \, s$

 $\begin{array}{l} P \leq 10 \text{ MW} \\ \int \ P \ dt \leq 80 \text{ MJ} \implies \textbf{200 MJ} \\ \int \ \tau_{\text{pulse}} ~ \textbf{10 s} \\ (... 60 \text{ s} @ \text{ reduced power}) \end{array}$

 $P_{cw} \sim 10 \text{ MW}$ $P_{pulse} \sim 20 \text{ MW (10 s)}$ $P/A \leq 10 \text{ MW/m}^2$ Technical limit: 30 minutes @ 10 MW

Time line of the project Wendelstein 7-X

10 years assembly

pump-down cool down magnet ramp-up flux surfaces 1st plasmas
5 limiters $E_{\rm h} \le 4 \text{ MJ}$ $T_{\rm p} \sim 1 \text{ s}$

18 months assembly

inertial cooling 10 divertors $E_{\rm h} \le 200~{\rm MJ}$ $T_{\rm p} \sim 10\text{-}100~{\rm s}$

24 months assembly

water cooling 10 HHF divertors $E_{\rm h} \le 18000 \, {\rm MJ}$ $T_{\rm p} \sim 100 - 1800 \, {\rm s}$

2004-2014

2014

2015

2016

2017-2018

2018-2020

2021 ...

View into the plasma vessel (May 2017, module 2)

View into the plasma vessel (December 3, 2018!)

- First inspection after OP 2.1b
- Module 4, seen from M5First

Completion phase 2018-2020

- **10 HHF Divertors**
- 10 Cryo pumps with LHe
- complex cooling water system

full heating power 10 MW ECRH, steady state 10 MW NBI, for 10 s

Content of the talk

- 1. Why stellarators?
- 2. Technologies of W7.X
- 3. Performance

4. conclusions and the future

Electron cyclotron resonance heating above X2 cut-off

cut-off limits

ECR X2 heating $n_{\rm e} < 1.2 \cdot 10^{20} \, {\rm m}^{-3}$

ECR O2 heating $n_{\rm e} < 2.4 \cdot 10^{20} \, {\rm m}^{-3}$

ECE and TS

stray radiation $< 20 \text{ kW/m}^2$

OXB mode conversion schemes under development

NBI heated discharges with high density

- pure NBI heating can sustain plasma
- stabilization of ion heating w/o ECRH

by courtesy of D. Hartmann

- centrally peaked high density plasma core
- density peaking can be controlled by additional ECRH
- pure NBI heating with $n_{\rm peak}(0)=2\cdot10^{20}\,{\rm m}^{-3}$ demonstrated

Divertor heat flux

10 high resolution IR cameras

asymmetry toroidal $\leq 40/25\%$ (trim coils) up/down ~ 10-20%

power fall-off length $\lambda_{\rm q}$ = 15 ... 30 mm power wetted area $A_{\rm wet}$ ~ 1.2 m²

strike lines defined by the long connection lengths ranging between $200\ m$ and $600\ m$

Power detachment

H pellet injection into He density ramp-up to $4-5\cdot 10^{19} \text{m}^{-2}$

power load drops to ∼ zero

Long pulse discharge with divertor detachment

- O2 ECR heating with 5 MW power 150 MJ
- 0.6 MJ diamagnetic energy $\tau_{\text{F}} \approx 0.1 \text{ s}$
- $0.9 \cdot 10^{20} \text{ m}^{-2}$ line-integrated density 30 s flat-top density feedback control
- 2.5 keV central electron/ion temperature
- full detachment div. pressure 0.07 Pa
- $Z_{
 m eff}$ constant over the full discharge

A record high performance plasma

Content of the talk

- 1. Why stellarators?
- 2. Technologies of W7-X
- 3. Performance

4. conclusions and the future

nTτ-diagram

- J. D. Lawson, 1957
- power balance for a fusion plasma
- 2 curves derived
- logarithmic scale
- a measure for the success of fusion
- factor 10⁵ in 50 years
- However, most of these values are not stationary!

Fusion triple product and pulse length

From W7-X to a HELIAS fusion power plant

Requirements / parameters

- Average magnetic field on axis 5 6 T
 (max. field at coils 10 12 T)
- Size of coils and magnetic field similar to ITER (ITER coils technology can be applied)
- Sufficient space for blanket
 (~1.3 m between plasma and coils)
- $<\beta> = 4 5\%$ (W7-X value!)
- Fusion power ~ 3GW
- Advantage of larger aspect ratio: Reduced neutron flux through wall (average 1 MW/m², maximum 1.6 MW/m²)

Summary and conclusions

- 1. Fabrication and assembly of W7-X have been tedious, but the device turned out to be highly reliable and stable it is easy to operate and mechanically stable.
- 2. The island divertor shows even heat load distribution, power detachment and discharges with controlled plasma radiation and high neutral compression rates.
- 3. Even before its completion, W7X has reached record nTt-vaues for helical devices.
- Water cooling of all in-vessel components and active divertor pumping are now needed to further extend the discharge duration at high heating power.
- More ECRH heating power is needed and aimed for (perspective 12×1.5 MW).