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One-team approach for operation: 

• The W7-X Team includes researchers and engineers from IPP, Euratom,              
US (DoE), and Japan. 

• It will be published in the Nuclear Fusion paper of the IEAE FEC 2018. 
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2. Technologies of W7-X 
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4. Conclusions and the future 
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Stellarators 
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• 1951 invented by Lyman Spitzer jr. in 
Princeton in a classified report.  

• Project Matterhorn 

• First stellarator operated in early 1953, 
as figure-8 or racetrack.  

 

• This picture in 1983, just before donated 
to the Smithsonian. 

 

• Plasma confinement was rather bad  
and PPPL “switched” to tokamaks. 



Magnetic confinement schemes 
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 currents in coils and plasma  current in coils only 

+ good heat isolation  

+ highly symmetric  

-  pulsed operation 

-  free energy can drive instabilities 

-  bad heat isolation 

-  not obviously symmetric 

+ steady state operation 

+ no current-driven instabilities 

Tokamak                                          Stellarator 



Improved Magnetic confinement schemes 
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 currents in coils and plasma  current in coils only 

+ good heat isolation  

+ highly symmetric  

o steady state operation with current drive 

o active control of instabilities 

o good heat isolation 

o quasi-symmetric 

+ steady state operation 

+ no current-driven instabilities 

Tokamak                                        optimized Stellarator 



Physics optimisation of stellarators 
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1.  high quality of vacuum magnetic surfaces  

2.  good finite equilibrium properties @ < > = 5% 

3.  good MHD stability properties @ < > = 5% 

4.  reduced neoclassical transport in 1/ -regime 

5.  small bootstrap current in lmfp-regime 

6.  good collisionless fast particle confinement 

7.  good modular coil feasibility 

seven optimisation criteria: 
Several 3d computer codes 

•  vacuum field and coils 

•  MHD equilibrium/stability 

•  neoclassical transport 

•  Monte Carlo test particle 

•  edge and divertor  

J. Nührenberg  
et al. 

the mission for W7X 

• Confirm the numerical optimisation 

• Perform high power discharges, 
  steady-state, with an energy      
    confiment like a equivalent tokamak 
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Major elements and parameters of Wendelstein 7-X 
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50 non-planar NbTi coils  

5 types DC <18 kA 

20 planar NbTi coils  

2 types DC <16 kA 

113 NbTi bus bars 

14 HTSC current leads 

about 1000 helium pipes 

10 central support ring elements 

cryostat vessel 420 m3 

thermal insulation  

plasma vessel 80 m3  

265 m2 in-vessel components 

plasma 30 m3 

254 ports 120 shapes 4.5 m machine height 

16 m machine diameter 

735 t device mass 

435 t cold mass 3.4 K 



Construction of W7-X, 4/5 modules in the final position 
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The island divertor concept 

HSB, 5.12.2018 11 

 0

10 island divertor modules 

@ bean-shaped cross sections ergodic region 
islands 

X-point 

horizontal target 

vertical target 

baffle 

total target area 19 m2 

heat flux  10 MW/m2 

connection lengths  500 m 

incidence angles 2-3°  

initial setup with un-cooled graphite elements  
future setup with water-cooled CFC elements  
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staged approach to the finalization of W7X 
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OP 1.1 

• 5 limiters 

OP 1.2a/b 

• Test Divertor elements (TDU) 

• Baffle elements  

• Divertor closures 

• Graphite wall tiles 

• 2 TDU scraper elements (OP 1.2b) 

OP 2 

• High-Heat-Flux divertor  
  (steady-state Water cooling) 

• Port protection liners 

• Cryo pumps (10 units) 

P < 5 MW 

 P dt  2 MJ 

pulse ~ 1 s 

P  10 MW 

 P dt  80 MJ  

 pulse ~ 10 s 

(... 60 s @ reduced power) 

Pcw ~ 10 MW 

Ppulse ~ 20 MW (10 s) 

P/A  10 MW/m2 

Technical limit: 
 30 minutes @ 10 MW 

D
ev

ic
e 

co
n

fi
gu

ra
ti

o
n

 
O

p
er

at
io

n
 p

ar
am

et
er

s 

1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 7 8 9 0 1 2

Comm. OP 2OP 1.2a OP 1.2b

20212020

OP 1.1 CP 1.2aCommissioning CP 1.2b CP 2

2015 2016 2017 2018 2019

 200 MJ 



Time line of the project Wendelstein 7-X 
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magnet ramp-up 
flux surfaces 

2014 

1st plasmas  
5 limiters  
Eh4 MJ 

Tp1s 
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View into the plasma vessel (May 2017, module 2) 
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View into the plasma vessel (December 3, 2018!) 
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• First inspection after OP 2.1b 

 

• Module 4, seen from M5First 



Completion phase 2018-2020 
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• 10 HHF Divertors 
• 10 Cryo pumps with LHe  
• complex cooling water system 

 pulse lengts up to 30 min possible 
 full heating power  
 10 MW ECRH, steady state 
 10 MW NBI, for 10 s 



Content of the talk 

HSB, 5.12.2018 17 

1. Why stellarators? 
 

2. Technologies of W7.X 
  

3. Performance  

 

4. conclusions and the future 

FUSION POWER ASSOCIATES 39TH ANNUAL MEETING, Washington, December 4-5,2018 



Electron cyclotron resonance heating above X2 cut-off 
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module 2 
module 3 
module 4 

ECE and TS 

stray radiation 
< 20 kW/m2 

by courtesy of T. Stange OXB mode conversion schemes under development 

cut-off limits 

ECR X2 heating ne<1.2·1020 m-3 

ECR O2 heating ne<2.4·1020 m-3  
 

ECE 141 GHz in cutoff                                  

X2 start-up 

X2 ramp-down   

full O2 heating 

pellet injection 
start 

optimum 

multi-pass absorption/w 
reflection at tiles & panel 

only 70% single 
beam O2 absorption 
(at 1020 m-3 and 3 keV) 

20171115.039 
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NBI heated discharges with high density 
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 centrally peaked high density plasma core 

 density peaking can be controlled by additional ECRH 

 pure NBI heating with npeak(0)=2·1020 m-3 demonstrated 

 pure NBI heating can sustain plasma 

 stabilization of ion heating w/o ECRH 
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by courtesy of D. Hartmann 



Divertor heat flux 
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10 high resolution IR cameras 

by courtesy of P. Drewelow 

asymmetry  toroidal    40 / 25% (trim coils) 
                      up/down  10-20% 

power fall-off length q= 15 … 30 mm 

power wetted area   Awet  1.2 m2  

strike lines defined by the long connection  
lengths ranging between 200 m and 600 m 
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Power detachment 
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detachment by pellet injection 
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 H pellet injection into He   
density ramp-up 

to 4-51019m-2 

power load drops to  zero  
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Long pulse discharge with divertor detachment 
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O2 ECR heating with 5 MW power 150 MJ 

0.91020 m-2 line-integrated density 
30 s flat-top density feedback control 

2.5 keV central electron/ion temperature 

full detachment – div. pressure 0.07 Pa   re
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0.6 MJ diamagnetic energy E0.1 s 

Zeff constant over the full discharge 
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A record high performance plasma  
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record triple product  
0.6∙1020 keVs/m3 

20171207.006 

diamagnetic energy  1 MJ  

by courtesy of S. Bozhenkov 

MHD event 

X2 ECRH power doubled 

hydrogen pellet injection 
into helium target plasma  

thermalization Te=Ti 

by courtesy of S. Bozhenkov 
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nT-diagram 
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• J. D. Lawson, 1957 

• power balance for a fusion plasma 

• 2 curves derived 

•  logarithmic scale  

 

• a measure for the success of fusion 

• factor 105 in 50 years 

 

• However, most of these values are 
not stationary! 
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Fusion triple product and pulse length 

HSB, 5.12.2018 26 

by courtesy of M. Kikuchi 
T.S. Pedersen, PPCF 61 (2018) 
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From W7-X to a HELIAS fusion power plant 
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R = 22 m, A = 12 

Requirements / parameters 

• Average magnetic field on axis 5 – 6 T 
 (max. field at coils 10 – 12 T) 

• Size of coils and magnetic field similar to 
ITER (ITER coils technology can be applied) 

• Sufficient space for blanket 
 (~1.3 m between plasma and coils) 

• <> = 4 – 5 % (W7-X value!) 

• Fusion power ~ 3GW 

• Advantage of larger aspect ratio: Reduced 
neutron flux through wall (average 1 
MW/m2, maximum 1.6 MW/m2) 



Summary and conclusions 
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1. Fabrication and assembly of W7-X have been tedious, but the device turned out 
to be highly reliable and stable – it is easy to operate and mechanically stable.    

2. The island divertor shows even heat load distribution, power detachment and 
discharges with controlled plasma radiation and high neutral compression rates.  

3. Even before its completion, W7X has reached record nTt-vaues for helical devices. 

 Water cooling of all in-vessel components and active divertor pumping are now 
needed to further extend the discharge duration at high heating power. 

 More ECRH heating power is needed and aimed for (perspective 12  1.5 MW). 
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