Fusion Energy Sciences Perspective

James W. Van Dam
Associate Director
Office of Science
Fusion Energy Sciences

Fusion Power Associates 40th Annual Meeting
December 4, 2019
1. Budget Updates
The FY 2019 FES budget enabled a number of accomplishments

- **U.S. Contributions to ITER project**: Completed testing of the first superconducting central solenoid magnet module. Cash contributions were made in FY 2019 and recently in FY 2020.

- **DIII-D**: Successfully completed 12 run weeks in FY 2019. The world’s first toroidally steerable, off-axis neutral beam injector was installed on schedule and successfully operated. In FY 2020, DIII-D research is utilizing the new neutral beam and other heating/current drive systems to investigate steady-state plasma scenarios.

- **NSTX-U Recovery Project**: Successfully achieved SC approval of its baseline cost and schedule, and authorization of long-lead procurements.

- **Materials Plasma Exposure eXperiment (MPEX) MIE project**: Completed conceptual design. The project plans to complete preliminary design in FY 2020. Critical Decision-1 integrated project review was held Oct 16-18.

- **Matter in Extreme Conditions (MEC) Petawatt Upgrade**: Achieved approval of its Mission Need (CD-0).

- **Quantum Information Science (QIS)**: FES made awards in connection with its first-ever solicitation in QIS.

- **international Collaborations**: The portfolio was re-competed in FY 2019; ten multi-institutional awards were made for collaborative research on long and short pulse tokamak facilities in Asia and the EU. Also, U.S. scientists are designing and building a high-speed pellet fueling system for the W7-X stellarator.

- **Innovation Network for Fusion Energy (INFUSE)**: FES established this to support private-public partnerships. The initial awards were selected in September.

- **Machine Learning**: FES held a workshop, jointly with ASCR, to identify priority research opportunities in AI/ML.
Highlights from the House and Senate marks for the FY 2020 budget

- **From the House Energy and Water Development mark [May 2019]**
 - The Committee recommends $688,000,000 for Fusion Energy Sciences
 - Within available funds, the recommendation provides $20,000,000 for High Energy Density Laboratory Plasmas, including activities for LaserNetUS
 - Within available funds, the recommendation includes $4,000,000 for a Fusion Public-Private Partnership Program
 - The recommendation includes $21,000,000 for MPEX
 - The Committee recommends $230,000,000 for the U.S. contribution to the ITER project

- **From the Senate Energy and Water Development mark [September 2019]**
 - The Committee recommends $570,000,000 for Fusion Energy Sciences
 - The Committee recommends $180,000,000 for the domestic, in-kind contributions and related support activities of the ITER project
 - Encourages supporting optimal facility operations levels for DIII-D
 - Recommends $30,000,000 for the Material Plasma Exposure eXperiment
 - Supports the Matter in Extreme Conditions Petawatt Upgrade project and recommends $14,400,000 in construction funding and $1,400,000 in other project costs funding.
 - The Committee recommends $20,000,000 for LaserNetUS
 - Provides up to $20,000,000 over the budget request for the continuation of the INFUSE program
 - Directs the Department to create a Fusion Public-Private Partnership Cost Share Program that advances multiple fusion advanced reactor technologies and recommends up to $20,000,000 for this new program

- **FY 2020 has begun with two Continuing Resolutions, the second to December 20, 2019.**
American Leadership in Industries of the Future:
- FES investments in transformational technologies such as artificial intelligence / machine learning, quantum information science (QIS), data science, microelectronics, advanced manufacturing, and high-performance computing will accelerate progress in several mission areas

American Energy & Environmental Leadership:
- Early-stage research in fusion could contribute to American energy dominance by making available to the American people a robust base-load electricity clean energy technology that relies on widely available and virtually inexhaustible fuel sources.
- Investments in our major fusion facilities and smaller-scale experiments will maintain and modernize our research infrastructure for continuing to conduct world-leading research

Build & Leverage a Diverse, Highly Skilled American Workforce:
- The unique scientific challenges and rigor of fusion and plasma physics research contribute to the development of a well-trained STEM-focused workforce, which will contribute to maintaining and advancing U.S. competitiveness and world-leadership in key areas of future technological and economic importance, as well as national security

Create and Support Research Environments that Reflect American Values:
- FES-supported research is guided by the principles of Integrity and scientific rigor, diversity and inclusiveness, and emphasis on safety and protection of American research assets

Support Transformative Research of High Risk and Potentially High Reward:
- Research on high-temperature superconductors, additive manufacturing, low-temperature plasmas, and high-energy-density plasmas lead to connections with and spinoffs for U.S. industry

Build, Strengthen, and Expand Strategic Multisector Partnerships:
- Established partnerships within DOE (ASCR, BES, HEP, ARPA-E, NNSA) and outside (NSF) maximize leverage and increase the cost effectiveness of FES research activities
- Private-public partnerships through the INFUSE program leverage opportunities in critical fusion research areas (e.g., diagnostics, theory and simulation, materials science, and magnet technology)
2. Programmatic Updates
FY 2019 Highlights and Achievements

- Completed Long Torus Opening activities during 12-month vent period, including installation of toroidally steerable, off-axis neutral beam injector
- Completed 12-week experimental science campaign
- Demonstrated top-launch electron cyclotron current drive system
- Fabricated helicon antenna modules
- Designed high-field-side lower hybrid system

FY 2020 Plans

- 20-week experimental campaign
 - Study steady-state scenarios with two off-axis NBI
 - One-week hydrogen campaign
 - 1-2 week Frontier Science Campaign
- Install helicon antenna
- Fabricate prototype for mid-plane 3D field coil
An Independent Project Review was held August 27-29 to baseline the NSTX-U Recovery Project
- Review panel noted that the project is quite mature, given the overall completion of ~50% (with over 70% design complete), and concluded it is ready to begin major construction
- The baseline cost of the NSTX-U Recovery project is $199.4M, with a completion date (CDE-4) of July 2022 (and early finish in FY 2021)

An ESAAB-equivalent meeting was held on September 30
- CDE-2/3A received final approval to begin construction

Prior-authorized early construction activities had already been underway
- Clean room winding lines to fabricate poloidal field coils are complete
- Procurement of all graphite material for PFC replacement is complete
First-of-a-kind collaboration to conduct open public science on a privately funded fusion facility

- This month ORNL, PPPL, and Tokamak Energy signed a CRADA covering a ~ 2-year collaborative research program
- FES awarded a total of $3.9M to ORNL and PPPL to carry out open public research on the privately funded ST40 spherical tokamak, located in the U.K.
 - University subcontracts are also supported
- The collaborative research intends to study world-leading high toroidal magnetic field (up to 3 T) spherical tokamak plasmas to explore:
 - ST energy confinement scaling’s w.r.t. high B_T & I_p
 - λ_q at B_{pol} nearly 2 x greater than NSTX-U and MAST-U
 - Maximum achievable ST pedestal pressures by temporarily relocating the NSTX-U Thomson pulse-burst laser system to ST40
- This CRADA could serve as a model for future public utilization of privately funded fusion facilities (international or domestic)
Competitive solicitation conducted in FY 2019 involved activities on both long- and short-pulse tokamaks

- Interdisciplinary teams from multiple U.S. institutions are supported for collaborative research aimed at advancing the scientific and technology basis for sustained long-pulse burning plasma operation.

<table>
<thead>
<tr>
<th>Collaborative Proposal Title</th>
<th>Facility</th>
<th>Lead PI Name</th>
<th>Lead Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Pulse High Performance Scenarios and Control in EAST</td>
<td>EAST</td>
<td>Humphreys, David</td>
<td>General Atomics</td>
</tr>
<tr>
<td>Disruption Prediction and Avoidance in High Beta Long Pulse KSTAR Plasmas – Real Time Expansion</td>
<td>KSTAR</td>
<td>Sabbag, Steven</td>
<td>Columbia University</td>
</tr>
<tr>
<td>Physics Basis, Optimization, and Control for Integrated 3D Edge Long-Pulse Tokamak Scenarios</td>
<td>KSTAR, AUG, COMPASS</td>
<td>Park, Jong-Kyu</td>
<td>PPPL</td>
</tr>
<tr>
<td>Evaluation of Tungsten as the Main Plasma-Facing Material in a Long-pulsed Tokamak</td>
<td>WEST</td>
<td>Unterberg, Ezekial</td>
<td>ORNL</td>
</tr>
<tr>
<td>Boundary, SOL, and Divertor Physics Studies on TCV</td>
<td>TCV</td>
<td>Marmar, Earl</td>
<td>MIT</td>
</tr>
<tr>
<td>Turbulent Transport Studies at ASDEX Upgrade Enabled by Correlation Electron Cyclotron Emission and nT-phase Diagnostic</td>
<td>AUG</td>
<td>White, Anne</td>
<td>MIT</td>
</tr>
<tr>
<td>Validation of energetic particle transport models for time-dependent integrated simulations of burning plasmas</td>
<td>JET, AUG, TCV</td>
<td>Podesta, Mario</td>
<td>PPPL</td>
</tr>
<tr>
<td>Disruption Mitigation Solutions for Long-Pulse Tokamaks</td>
<td>JET, KSTAR</td>
<td>Baylor, Larry</td>
<td>ORNL</td>
</tr>
<tr>
<td>Fast Particle-Wave Interactions and Alfvén Eigenmodes in the JET Tokamak Plasmas</td>
<td>JET</td>
<td>Porkolab, Miklos</td>
<td>MIT</td>
</tr>
<tr>
<td>Design and Development of an Electron Cyclotron Emission Diagnostics Suite for Compass Upgrade Tokamak</td>
<td>COMPASS-U</td>
<td>Houshmandyar, Saeid</td>
<td>University of Texas</td>
</tr>
</tbody>
</table>
• FES has initiated a new Major Item of Equipment project for a Linear Divertor Simulator
 – Mission Need and CD-0 approval were achieved in FY 2018
 – CD-1 Independent Project Review was held October 16-18, 2019

• FES is considering an MEC petawatt laser facility upgrade
 • Mission Need and CD-0 approval were achieved in FY 2019
 • Addresses a recommendation in the 2017 NAS report *Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light*
New Magnet Test Stand capability

- **Magnet Test Stand** for high-critical-temperature superconductor cable and magnets
- Jointly funded by FES and High Energy Physics
- At Fermilab
- LBNL will be designing and fabricating a large superconducting dipole magnet (15 T) to be used in the Magnet Test Stand

Right: Dr. James Siegrist (AD for HEP program)
Projects include the exploration of near- and long-term quantum computing opportunities for fusion and plasma science; the use of plasma science techniques to simulate trapped ion crystals of relevance to quantum simulation and sensing; the exploration of new realms of quantum behavior at high-energy-density conditions; and the use of near-term quantum computer hardware to formulate fusion-relevant chemistry and materials science phenomena.

<table>
<thead>
<tr>
<th>PI Name</th>
<th>Institution</th>
<th>Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parker, Scott</td>
<td>University of Colorado, Boulder</td>
<td>Plasma Theory Connections to Quantum Information</td>
</tr>
<tr>
<td>Gomes Loureiro, Nuno</td>
<td>Massachusetts Institute of Technology</td>
<td>Quantum algorithms for fusion-plasma dynamics</td>
</tr>
<tr>
<td>Kostuk, Mark</td>
<td>General Atomics</td>
<td>Quantum Computing for Fusion Energy Materials</td>
</tr>
<tr>
<td>Alexeev, Yuri</td>
<td>Argonne National Laboratory</td>
<td>Quantum Computing for Fusion Energy Materials</td>
</tr>
<tr>
<td>Joseph, Ilon</td>
<td>Lawrence Livermore National Laboratory</td>
<td>Quantum Leap for Fusion Energy Sciences</td>
</tr>
<tr>
<td>Collins, Gilbert</td>
<td>University of Rochester</td>
<td>High Energy Density Quantum Matter</td>
</tr>
</tbody>
</table>
FES & ASCR held a joint workshop April 30 – May 2, 2019, on **Advancing Fusion with Machine Learning**

Chair & Co-Chair: David Humphreys (General Atomics), & Ana Kupresanin (LLNL)

Among the objectives was to identify areas where application of Machine Learning / Artificial Intelligence (ML/AI) techniques and data science more broadly can have a transformative impact on FES mission areas

Seven **Priority Research Opportunities** were identified

The final report is available on the FES website

Workshop on Advancing Fusion with Machine Learning

Priority Research Opportunities (PROs)

<table>
<thead>
<tr>
<th>Accelerating Science</th>
<th>Enabling Fusion Energy</th>
</tr>
</thead>
</table>
| PRO 1: Science Discovery with ML
 Hypothesis Generation and Experimental Guidance | PRO 4: Control Augmentation with ML
 Diagnostics to Data, Dynamic Models for Control, Fusion Trajectory Design |
| PRO 2: ML Boosted Diagnostics
 ML Boosted Diagnostics, Physics Enhanced Data | PRO 5: Extreme data algorithms
 Extreme-scale Processing, in-situ Data Analysis |
| PRO 3: Model Extraction and Reduction
 Data-driven Models, Reduction of Complex Code Algorithms | PRO 6: Data-enhanced Prediction
 Prediction of Disruption Events and Effects, Plasma Phenomena and State Prediction |

PRO 7: Fusion Data ML Platform

NSF/DOE Partnership: Over $7 million funded by DOE in 2019

FY 2019 FES contribution

- FES provided $7.0 million FY 2019 funds for the Partnership, supporting 11 new and 3 supplemental proposals in basic plasma, non-neutral/dusty plasma, HED plasma, and low-temperature plasma.
- This includes $2.7 million for Basic Plasma Science Facility’s (BaPSF) continuing operation and collaborative research at UCLA.

NSF/DOE Partnership includes:
- General Plasma Science
- Exploratory Magnetized Plasmas
- and HEDLP

Annual FES Funding Profile for the Partnership

- $7.7M annual average for the last 5 years

![BaPSF](image-url)
LaserNetUS website is managed by SLAC for the consortium

- It has all the information that users need including detailed information on facility capabilities and proposal submission process

https://www.lasernetus.org/
Google Analytics to gauge interest in LaserNetUS

LaserNetUS.org Domestic Users: interest from 46 States
New INFUSE private-public partnership program

- **Innovation Network for Fusion Energy (INFUSE)** program for fusion R&D was announced in June.
- INFUSE accepted basic research applications focused on innovation for fusion energy in enabling technologies, materials science, plasma diagnostics, modeling & simulation, and MFE experimental capabilities.
- INFUSE partnership awards (@$50K-$200K) are made to DOE national labs to help eligible private-sector companies overcome critical scientific and technological challenges in pursuing fusion energy.
- Request for Assistance (RFA) call issued on June 1 and closed on July 7, 2019:
 - 21 RFA proposals were received from 11 companies.
 - ORNL and PPPL carried out the merit review of the RFA proposals.
 - FES selected 12 projects for awards.

https://infuse.ornl.gov/
• Awards were made to BNL, LANL, LBNL, LLNL, ORNL, and PPPL to partner with:
 o Advanced Conductor Technologies
 o Commonwealth Fusion Systems
 o HelicitySpace
 o HyperJet Fusion Corporation
 o Proton Scientific Technologies
 o TAE Technologies, Inc.
• Topical areas included enabling technology, modeling & simulation, plasma diagnostics, and access to experimental capabilities
• The awards are subject to a successful negotiation of company-lab CRADAs

Full list with abstracts can be found at: https://infuse.ornl.gov/2019-infuse-awards-2/
The first INFUSE workshop was held **November 22-23**, in Knoxville, TN

Attended by 48 participants, the purpose of the workshop was to inform the private fusion industries about the capabilities at the DOE national laboratories, to learn from the private companies about their needs, and to discuss lessons learned from the FY 2019 pilot program.

The INFUSE leaders also discussed program updates and future plans.

Attendees included the Point-of-Contacts from the 10 participating labs (BNL, INL, LANL, LBNL, LLNL, ORNL, PNNL, PPPL, SNL, and SRNL); representatives from nine private fusion companies, ARPA-E, and the Fusion Industry Association; and DOE-FES staff.

https://infuse.ornl.gov/
3. ITER Updates
Construction progress at ITER Complex
ITER Council Meeting (Nov 20-21)

Signing of ITER Management Assessment contract

Interior of Assembly Hall

Tour of Tokamak Complex (B2): DG B. Bigot and SC-1 C. Fall
U.S. Contributions to ITER project

Cash contributions

Recent FY20 cash payment of $30M
FY19 cash payments: 2 X $15M

Funding for in-kind hardware components

U.S. ITER Subproject-1 (First Plasma) is 60% complete
4. Program Planning
National Academy recent studies

Burning Plasma Research (December 2018):
• “The scientific and technical benefits from the study and operation of ITER are compelling and critical to the development of fusion energy for the United States.”
• “The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at a scale of a power plant.”

Decadal Assessment of Plasma Science (underway)
• **Objective:** Conduct a study of the past progress and future promise of plasma science and technology and provide recommendations to balance the objectives of the field in a sustainable and healthy manner over the long term
• **Multiple federal sponsors:** DOE (FES, HEP, NNSA, ARPA-E); NSF; DOD (AFOSR, ONR)
Long-range strategic planning activity launched in FY 2019 for FES program

- The plan will be comprehensive and will include all FES program areas
- Process is similar to that used by the Office of Science High Energy Physics (HEP) and Nuclear Physics (NP) programs for the development of the HEP-P5 report and NP-Long Range Plan

Phase 1: Community-organized activities

1. Community Awareness
 - Inform the community that a FESAC charge is coming
2. Subfield community self-organization
3. FESAC charge issued
4. FES tasks APS-DPP to convene topical town hall meetings
5. “Snowmass” meeting

Phase 2: FESAC federal advisory committee
• Numerous town halls
• Two rounds of community workshops (July & November)
• Hundreds of white papers
• Program Committee writing retreat
• CPP-Houston ("Snowmass") Meeting: week of Jan 13
• FESAC Meeting: Mar 16-17
• Congress has expressed its interest on understanding the regulatory approach for Advanced Nuclear Reactors, including nuclear fusion reactors
 – Nuclear Energy Innovation and Modernization Act, S.512 (January 2018)

• Early in 2019, FES along with ARPA-E formed an informal working group with the Nuclear Regulatory Commission to exchange information
 – Acknowledge Kurt Heckman for initiating this

• DOE and NRC senior management are aware of this activity and have been involved in planning future engagements
 – Acknowledge Undersecretary Paul Dabbar and NRC Chair Kristine Svinicki for help and support

• Currently planning to hold a one-day public forum on fusion regulation on March 18, 2020, in Rockville, in conjunction with a FESAC meeting (March 16-17, in Rockville)
 – DOE and NRC are developing a draft agenda for this public forum
• **Advanced Research Projects Agency—Energy**
 – FES and ARPA-E are exploring joint collaboration possibilities

• **National Institutes of Health**
 – DOE began partnering with NIH in 2016 to transform cancer research through advances in high-performance computing technology and AI under the Cancer Moonshot program.
 • The partnership is jointly funded by NIH, NNSA, and SC-ASCR (ECP)
 – Recent meeting of all SC program offices with several NIH institutes
 • SEAB Task Force Report on Biomedical Sciences (2016)
 • HEWD mark-up language for FY 2020 budget
 – Possible coordination areas: data science and artificial intelligence, bio-imaging, cancer therapy, medical isotopes
5. People
Secretary of Energy Rick Perry announced that he will depart in December 2019

Deputy Secretary of Energy Dan Brouilette has been confirmed to be the next Secretary of Energy
Dr. Chris Fall was sworn in on May 31, 2019, as the Director of the DOE Office of Science.

Dr. James Van Dam became permanent Associate Director of Science for Fusion Energy Sciences on May 26, 2019.

After a year of phased retirement, Dr. Mark Foster fully retired on October 26, 2019.
Dr. Kathryn McCarthy
Announced as new USIPO Director (will join ORNL in March 2020)
• Vice president for science and technology and laboratory director for the Canadian Nuclear Laboratories (2016-2019)
• Previously held a variety of engineering and leadership roles at Idaho National Laboratory, including director of domestic programs in INL’s Nuclear Science and Technology Directorate, etc.
• Member of National Academy of Engineering (2019)
• Fusion Energy Sciences Advisory Committee member (1999-2013)
• US ITER technical advisory committee member (2010-2013)

SINCERE APPRECIATION TO:

Dr. Ned Sauthoff
USIPO Project Director
(2006-2019)

Suzanne Herron
USIPO Project Controls Director
(2009-2019)

Lester Price
USIPO Interim Project Director
FES made four university awards and two laboratory awards in FY 2019

Dr. Arianna Gleason
SLAC
Ultrafast visualization of hydrodynamic evolution: understanding void collapse at extreme high pressure conditions

Dr. Timothy Stoltzfus-Dueck
PPPL
Development and Testing of Reduced Models of the Edge Radial Electric Field

Prof. Ryan McBride
Univ. Michigan
The Physics of Micro-Pinches

Prof. Hussein Aluie
Univ. Rochester
Scale-Aware Modeling of Instabilities and Mixing in HED Flows

Prof. Karl Hammond
Univ. Missouri-Columbia
Lithium–Divertor Interactions and Helium/Hydrogen Trapping in Lithiated Metals

Prof. Elijah Thimsen
Washington Univ. in St. Louis
Structure of Plasma-Water Interface
• **FEC 2020**
 – 12-17 October 2020
 – Nice Acropolis Convention Center (Nice, France)

• **FES coordinator for US program committee**
 – Dr. Matthew Lanctot