Fusion Energy Research & Development in Japan: Perspectives and Planning toward DEMO

- ITER, JT-60SA and Other Broader Approach Activities -

Presented by Kenichi KURIHARA Naka Fusion Institute National Institutes for Quantum and Radiological Science and Technology

Fusion Power Associates 40th Annual Meeting and Symposi

Fusion

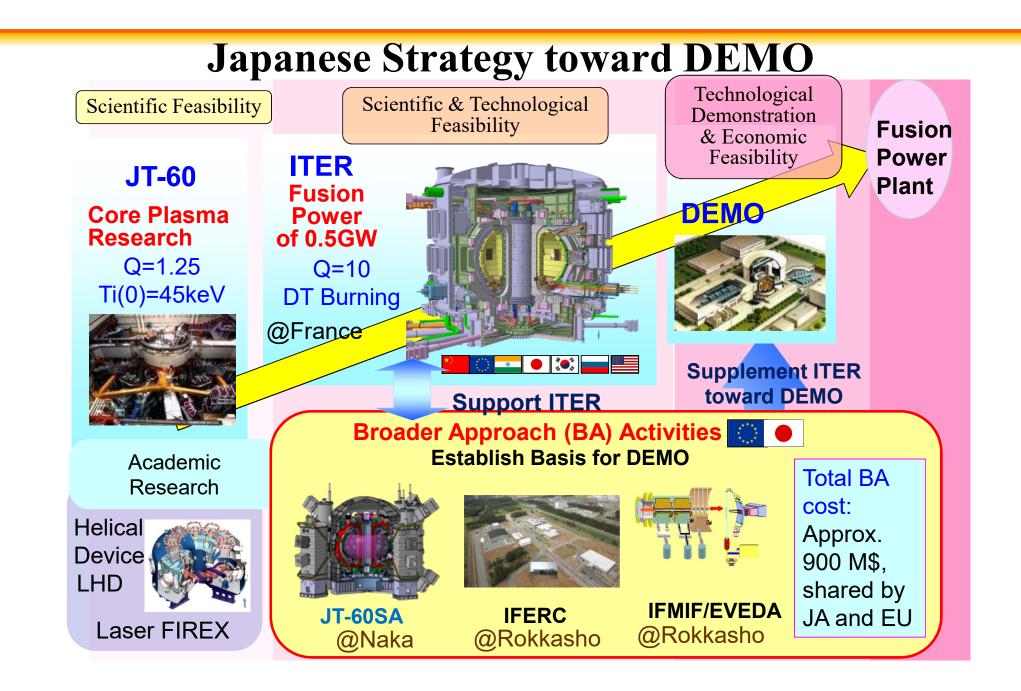
ray: Perspectives and Plan

December 3-

Grand Hyatt Washington Hotel

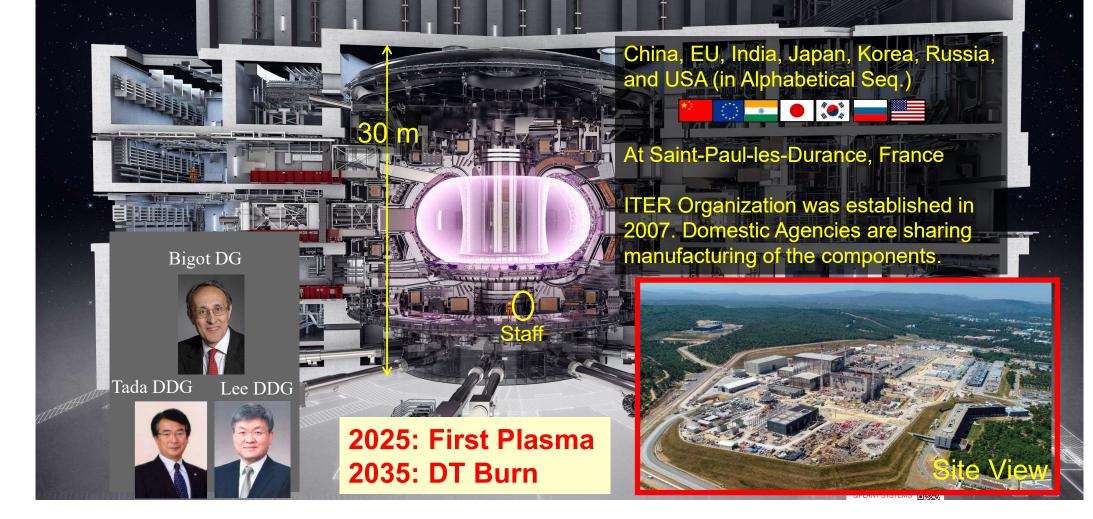
Fusion Energy Research & Development in Japan: Perspectives and Planning toward DEMO

Contents

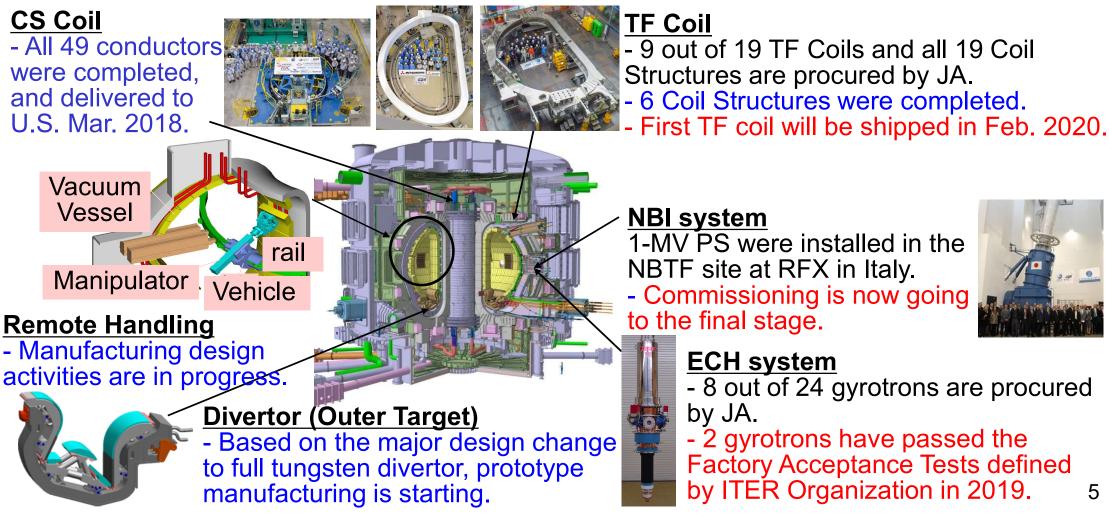

1. Japanese Strategy toward DEMO

3. Scenario toward DEMO

- New Strategy has come into action (2018)-
- Check & Review's in 2020, 2025, and 2030s
- Action Plan for DEMO and Roadmap


4. An Integrated Preparation Scheme to Build DEMO

5. Summary Fusion Energy: Perspectives and Planning

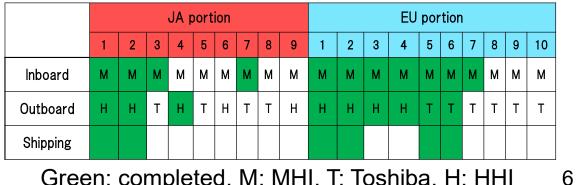

ITER Project: 7 Members Collaboration 65% Completed for FP

Demonstrate Long-pulse or Steady-state DT Burn Fusion Output = 500 MW, Q = 10 (Aux. Heating 50 MW)

ITER – Japanese In-kind Contribution

Manufacturing technology of ITER components is also indispensable for construction of DEMO.

Progress on TF Coils and TF Coil Structures


The First TF Coil will be completed in a few months at MHI.

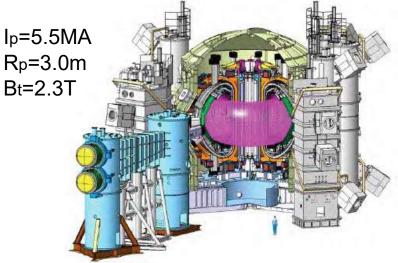
	JA TF coil								
	1	2	3	4	5	6	7	8	9
Double Pancake	М	М	Т	М	Т	М	Т	Т	м
Winding Pack	М	М	Т	м	Т	м	Т	Т	м
TF coil FAT	М	М	Т	М	Т	М	Т	Т	М

Green: completed, M: MHI, T: Toshiba

4 TF Coil Structures have been delivered to EU.

Green: completed, M: MHI, T: Toshiba, H: HHI

ITER – Essential and Crucial for DEMO –

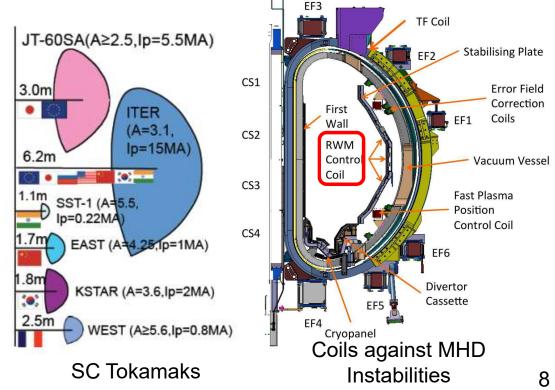

ITER provides the most essential manufacturing technology for DEMO construction, because....

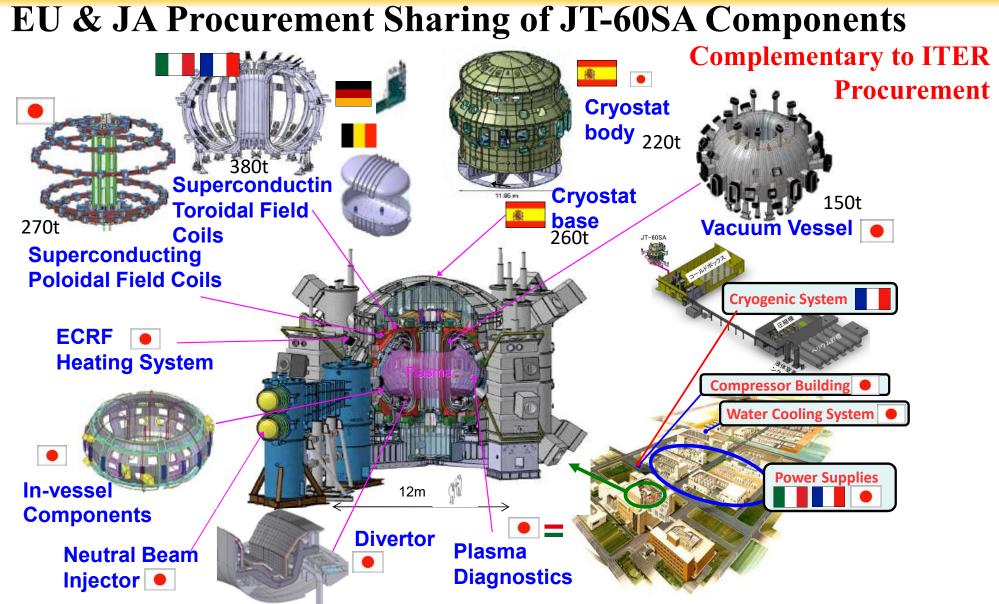
- Manufacturing technology of the components such as SC coils, heating & current drive systems (gyrotron, ion beam), divertor, remote handling, diagnostics, tritium handling, etc., for ITER provides a basis for DEMO. (e.g. precise welding, high voltage technology,)
- ITER has similar power-plant-scale facilities to DEMO.
- Plant integration & project management experience could be valuable lesson learned for DEMO.
- ITER Test Blanket Modules directly contribute to ones for DEMO.
- Licensing procedures for ITER are surely a good example of the DEMO regulation for any country.
- **DT burning plasma** operation generates a physics basis for DEMO.

Success in ITER construction and operation is necessary for DEMO.

7

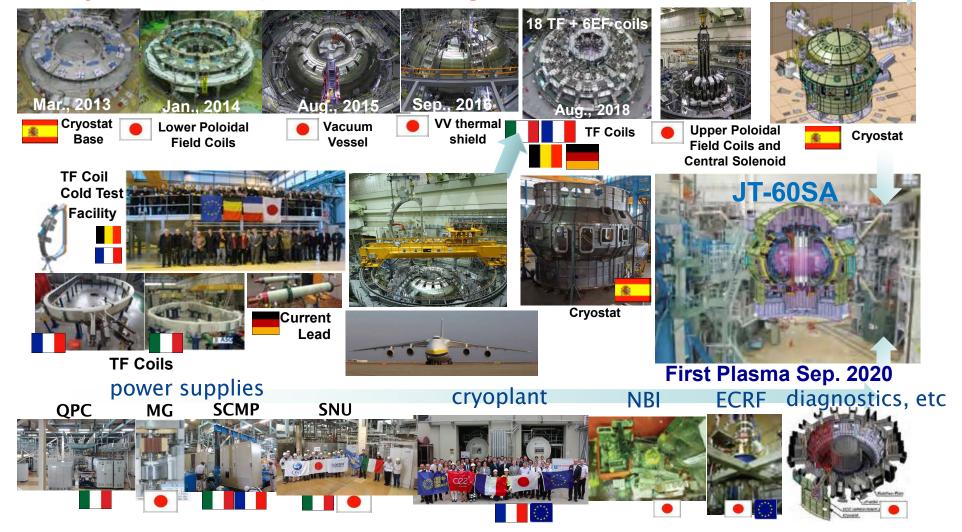
JT-60SA (Super Advanced) - Satellite Tokamak in BA

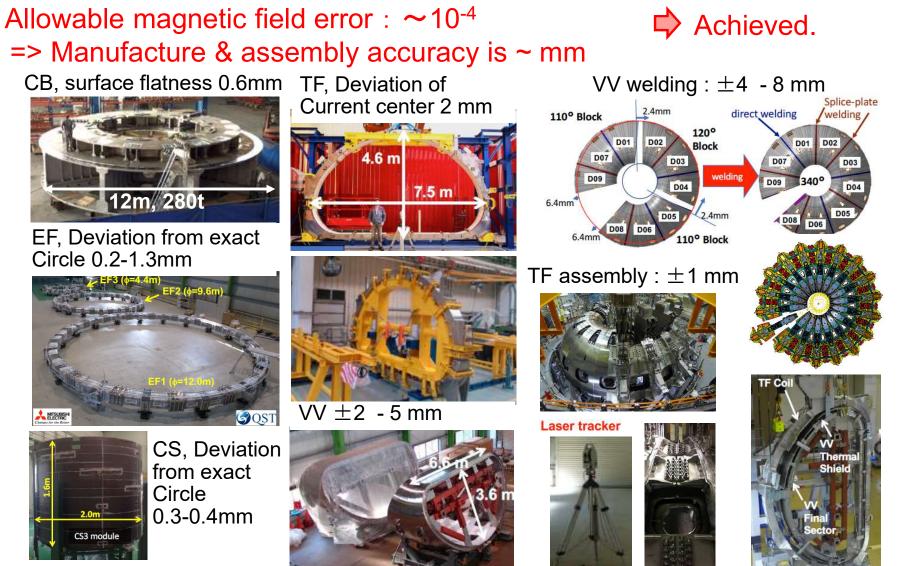


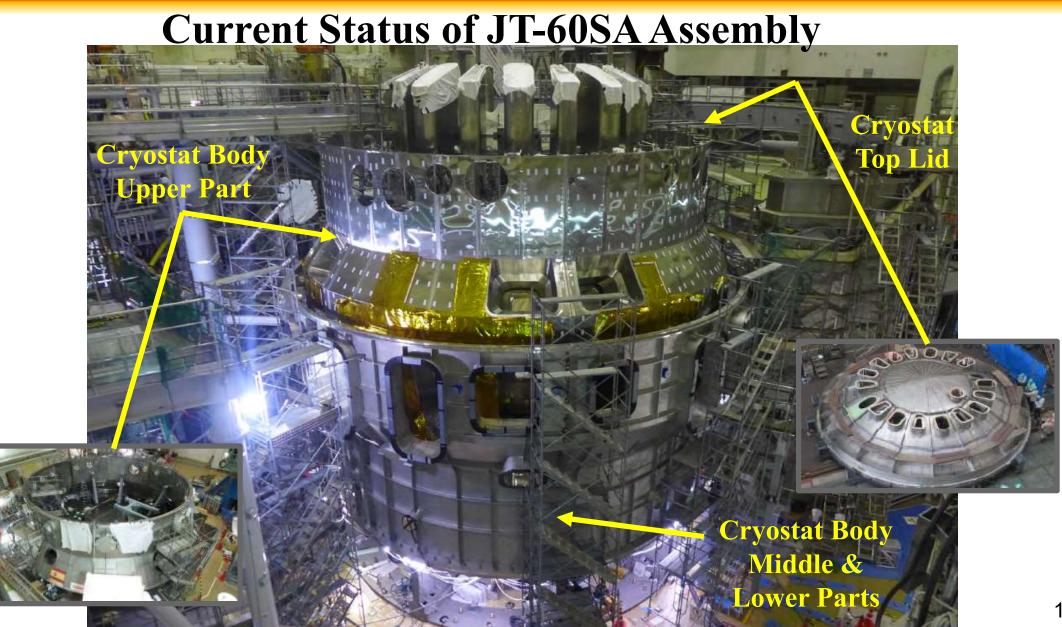

Complementary to ITER Project -

JT-60SA: a highly shaped ($S=q_{95}I_p/(aB_t)\sim7$, A~2.5) SC tokamak confining a deuterium plasma with Ip=5.5 MA for typically 100s longer than the timescales of the key plasma processes such as current diffusion with high heating power of 41MW (PNB: 24, NNB: 10, ECH: 7 MW).

Mission: contribute to early realization of fusion energy by addressing key physics and engineering issues for ITER and DEMO.

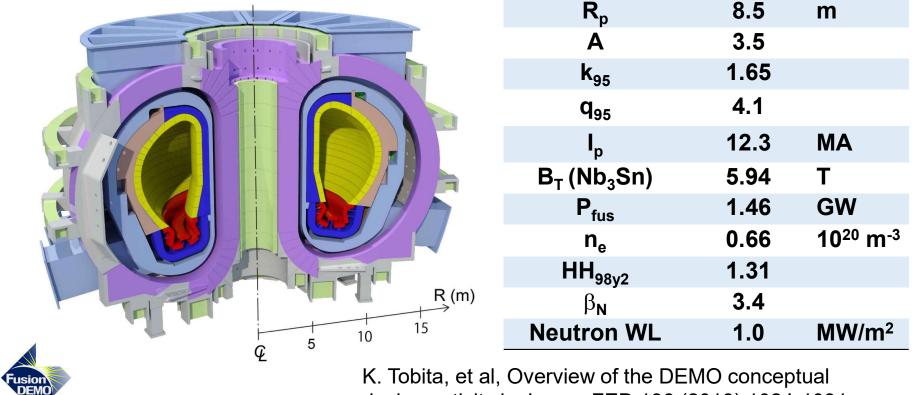

 Support ITER using break-even-equivalent class high temperature D-plasmas
 Supplement ITER toward DEMO with long sustainment (~100s) of high pressure steadystate plasmas necessary in DEMO
 Train Next Generation Researchers playing leading roles in ITER & DEMO

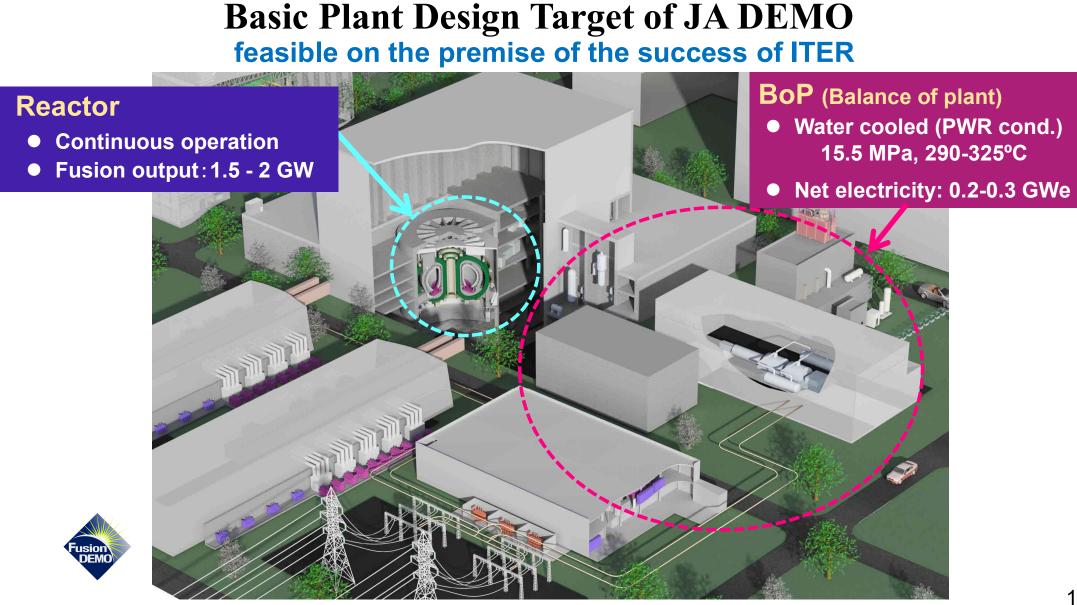



JT-60SA Assembly is going well on schedule.

Assembly will be completed in coming March & First Plasma September 2020

Achieved Small Tolerance of Manufacture and Assembly




JA DEMO (2018)

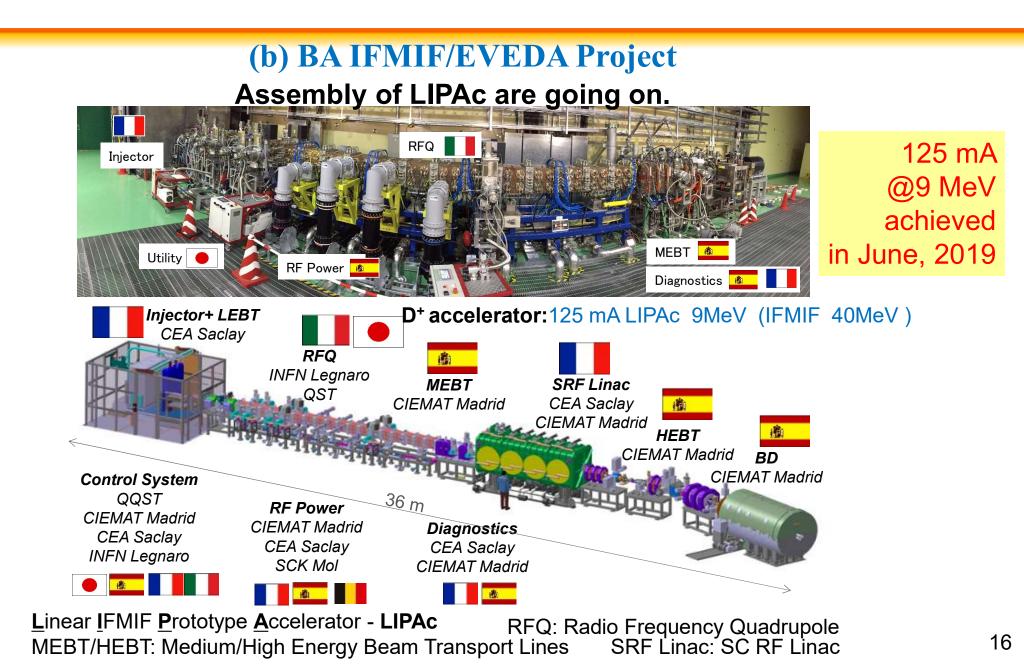
Major Parameters

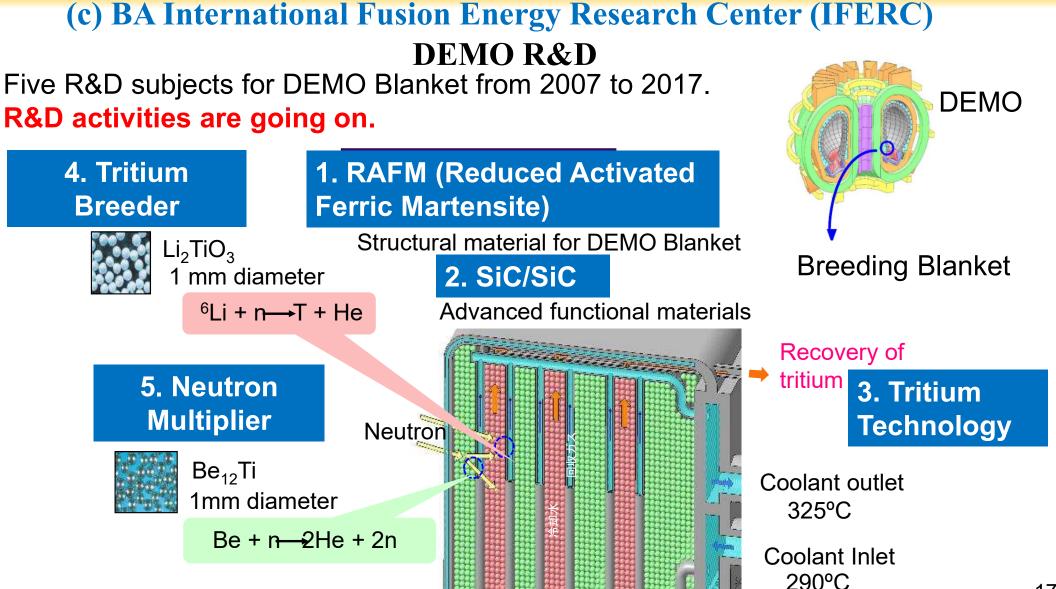
 $R_{p} = 8.5 \text{ m}$ Sufficient Volt-sec supply for operational flexibility P_{fus} ~ 1.5 GW ← Divertor heat removal, W mono-block < 10 MW/m² Breeding Blanket (BB) : Water-cooled Solid Breeder (WCSB)

design activity in Japan, FED 136 (2018) 1024-1031

Other Broader Approach (BA) Activities

Broader Approach (BA) Activities (2007-2020: Phase I) (a)Satellite Tokamak JT-60SA Program: high-β_N SC Tokamak


(b) Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF/EVEDA):


- Develop prototype accelerator for IFMIF

(c) International Fusion Energy Research Center (IFERC):

- DEMO Design
- DEMO R&D

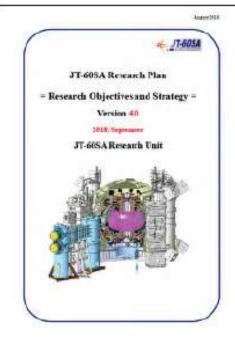
BA Phase II (2020 - 2025)

Discussion of BA Phase II

- BA Activities were launched under the BA Agreement between Japan and EU in 2007, and will finish in March 2020. The activities are (1) JT-60SA, (2) IFMIF/EVEDA, and (3) IFERC.
- BA Activities have been very well managed by both JA and EU, and now come to a mutual-trust-based collaboration.
- JA-EU recommends the following activities should be expected in the extended period of 5 years as BA phase II just after the current BA phase I.
 - (1) To develop operation scenarios for the ITER and DEMO reactor by using JT-60SA.
 - (2) To achieve the long-duration operation of Prototype Accelerator LIPAc (IFMIF/EVEDA).
 - (3) To design a DEMO reactor, to execute necessary R&D, and to operate the computer simulation center (IFERC).
- JA and EU are preparing to jointly declare to extend the BA activities.

BA Phase II Objectives for JT-60SA

- i) Start operation of the largest superconducting (SC) tokamak JT-60SA, and complete the integrated commissioning including the first plasma in 2020.
- ii) Evaluate the engineering achievements in constructing this large SC tokamak device for ITER, and
- iii) Execute the experiments for the "Initial Research Phase" defined in the JT-60SA Research Plan v.4.0: ITER scenario development, ITER risk mitigation, and preparation of steady-state high β_N scenario for DEMO.

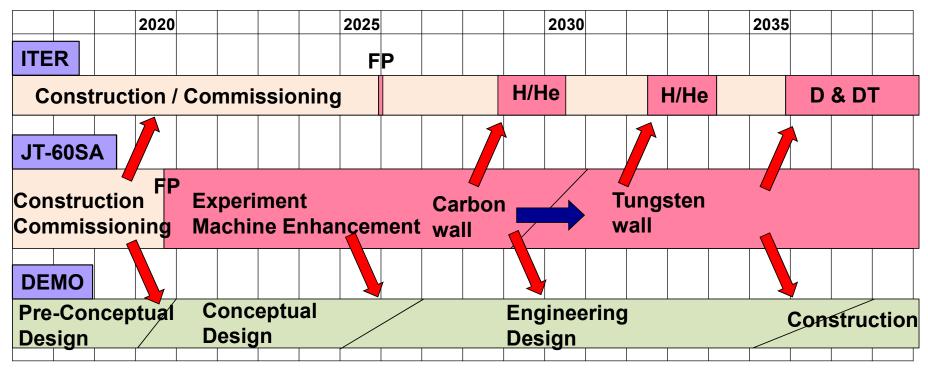

Machine enhancements

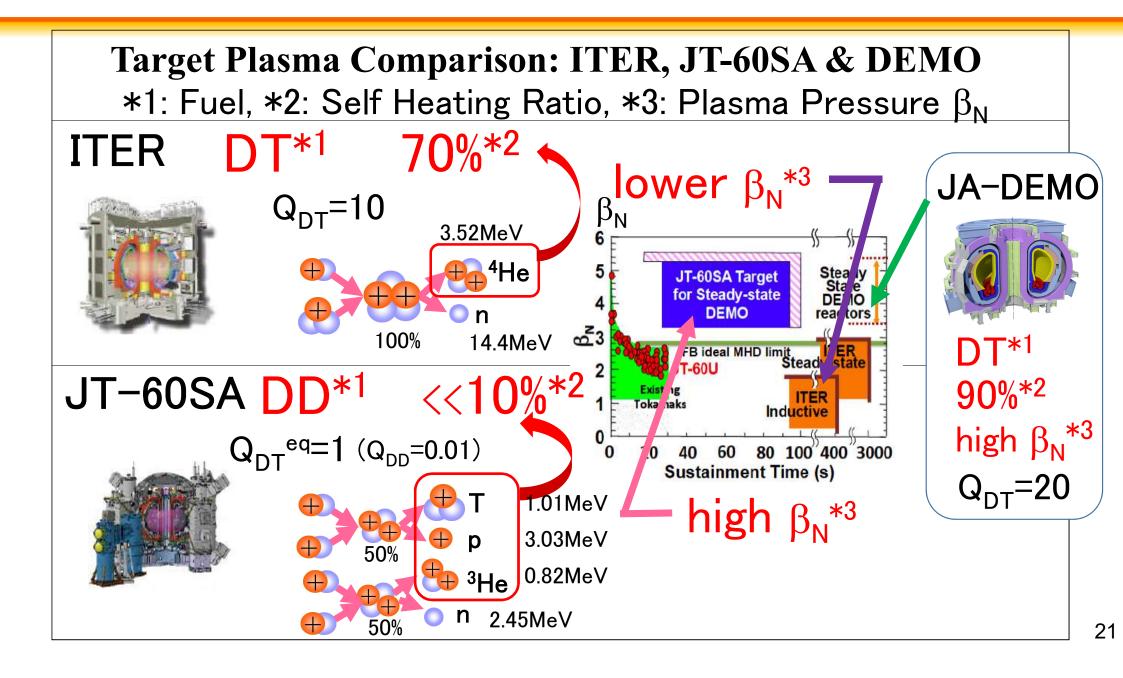
a) Manufacture & installation to allow high power heating Deuterium Exp. with i) In-vessel components,
ii) Heating (P-NB 8unit, N-NB 2 unit), and iii) Fundamental Plasma Diagnostics, pellet, MGI, etc.

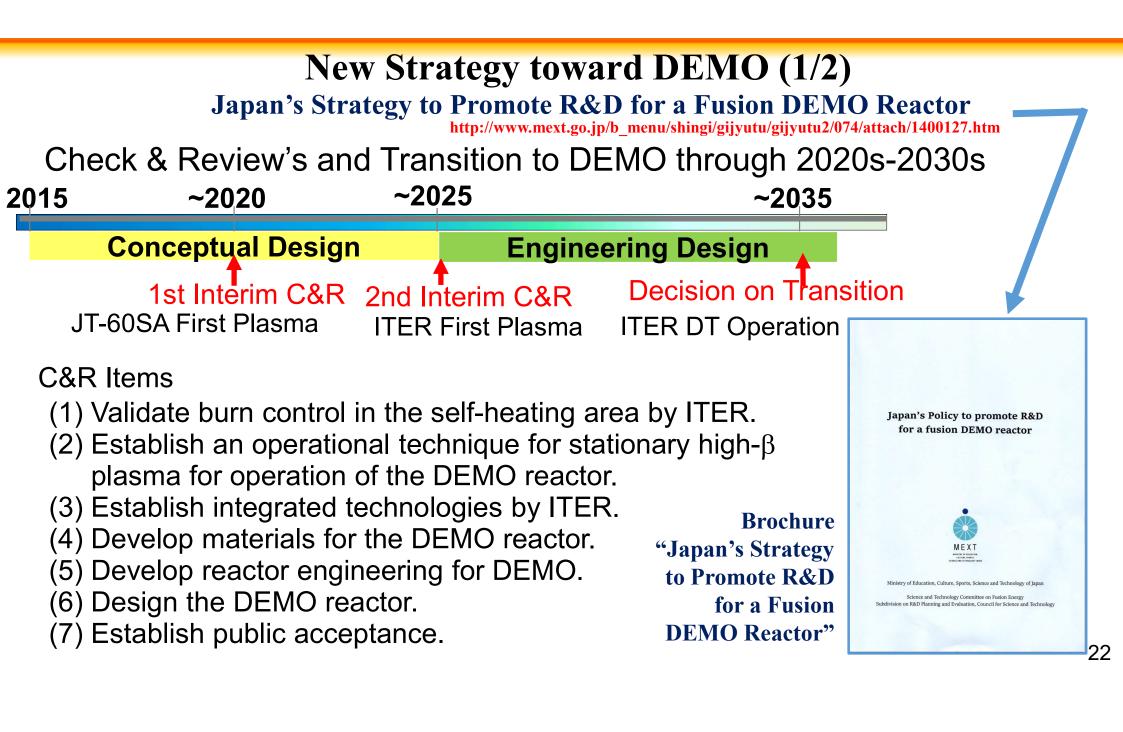
b) Manufacture/Preparation: CFC monoblock & Divertor cassettes, Advanced Diagnostics, Components for

collaboration with ITER.

JT-60SA Research Plan http://www.jt60sa.org/b/index_nav_3.htm?n3/operation.htm




Assumed JT-60SA Contributions to ITER and DEMO


Manufacture & Assembly Experiments/ Analyses/ Modeling => ITER, and DEMO

ITER & JT-60SA Collaboration Arrangement: Signed on Nov. 20, 2019

On-site Laboratory of JA & EU Univ. will be open at Naka site for Students

New Strategy toward DEMO (2/2)

New Strategy toward DEMO indicates the following points to solve technological issues:

- Development plan should contain construction cost, operation scenario, etc., with technical consistency.
- Technological issues are classified into 15 elements (12 issues (Slide 9) and 3) below as "Action Plan."
 - 1. DEMO design, 2. SC Magnets, 3. Blanket, 4. Divertor, 5. Heating and CD,
 - 6. Theory and Numerical Simulation, 7. Core Plasma Physics,
 - Fuel Systems, 9. Material Development and Code/Standards/Criteria,
 Safety, 11. Availability and Maintainability, 12. Diagnostics and Control Systems, 13. Social Relation, 14. Helical, and 15. Laser
- Action Plan provides Work Breakdown that leads to solutions for 15 R&D issues along with the R&D timeline of 3 periods of now-2020, 2020-2025 and 2025-2035. (Please see the supplements.)
- Framework covering industry, academia and government should be reorganized.
- Human resources for long-term R&D should be cultivated.

An Integrated Preparation Scheme to Build DEMO

Technological issues should be solved by executing "Action Plans."

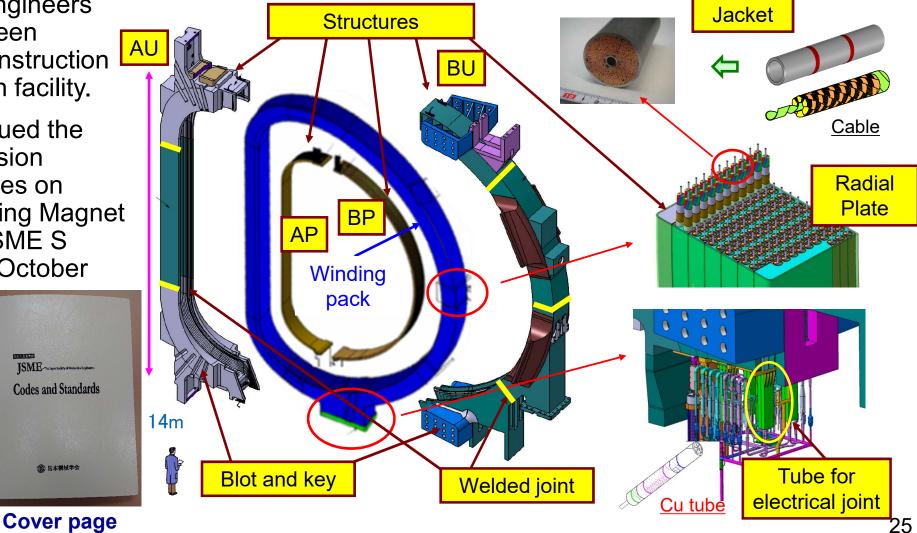
1. DEMO design, 2. SC Magnets, 3. Blanket, 4. Divertor, 5. Heating and CD, 6. Theory and Numerical Simulation, 7. Core Plasma Physics, 8. Fuel Systems, 9. Material Development and Code/Standards/ Criteria, 10. Safety, 11. Availability and Maintainability, 12. Diagnostics and Control Systems, 13. Social Relation (Public Acceptance),

ITER and JT-60SA component manufacture, and DEMO R&Ds

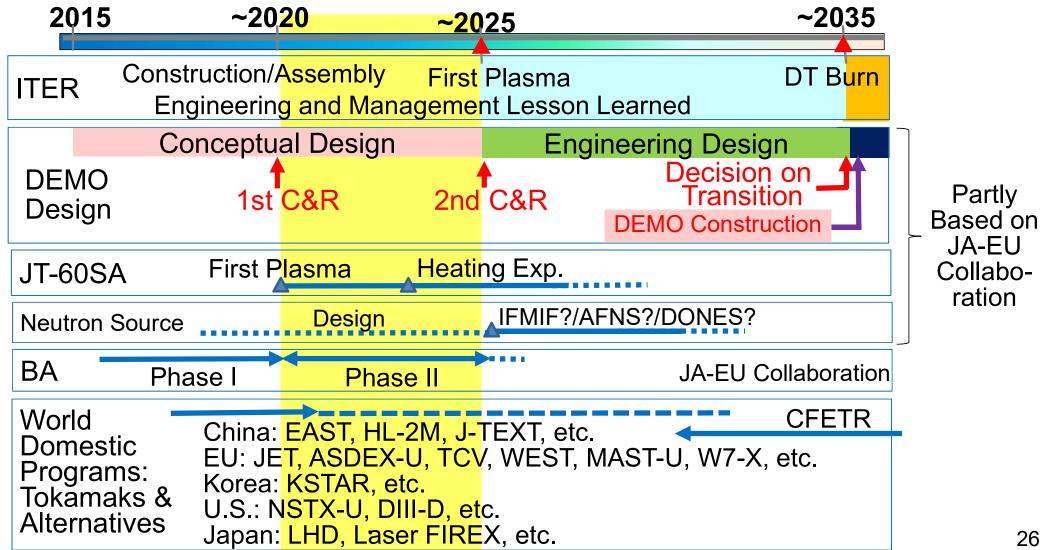
Manufacturing R&Ds, and Materials development using a Neutron Source, etc.

Plasma Experiments in JT-60SA, ITER, other Int'l tokamaks, and alternatives Industries, QST, etc. have acquired crucial techniques and know-hows through experience of manufacturing.

Codes and Standards with/in Academic Societies, Associations, QST, etc.


QST, ITER Organization, Int'l Collaborators, Universities, Industries, etc. develop a control method of a steady-state high β_N plasma with DT burning (at ITER).

Government-level Approval and Commitment are necessary for DEMO with Regulation & Licensing Scheme (Domestic Laws and Rules).


An Example of Code Development for Fusion Facility

- The Japan Society of Mechanical Engineers (JSME) has been developing construction code for fusion facility.
- The JSME issued the "Codes for Fusion Facilities - Rules on Superconducting Magnet Structure - (JSME S KA1-2017) in October 2008,

 Undated in Dec. 2013 and Dec. 2017.

Overall Schedule toward DEMO Construction

Summary

Fusion Energy: Perspectives and Planning

(1) ITER: Procurement is basically going well by overcoming engineering difficulties.
(2) Broader Approach (BA) Activities (2007-2020: Phase I)

- (a) In **JT-60SA** project (high- β_N SC Tokamak), construction/assembly is going well on schedule.
- (b) In **IFMIF/EVEDA** project, assembly of prototype accelerator for International Fusion Materials Irradiation Facility (LIPAc) is being collaboratively conducted.
- (c) In **IFERC**, DEMO Design and R&D are going well. New CSC started its operation.

BA Phase II (2020 - 2025): Under discussion by JA-EU.

In order to solve all the issues for DEMO completely,

(3) New Strategy toward DEMO was formulated:

C&R Items for 2020 and 2025, and Transition criteria for 2035 were decided.

Action Plan for DEMO and Roadmap including Domestic Programs are now being carried into action (2018-).

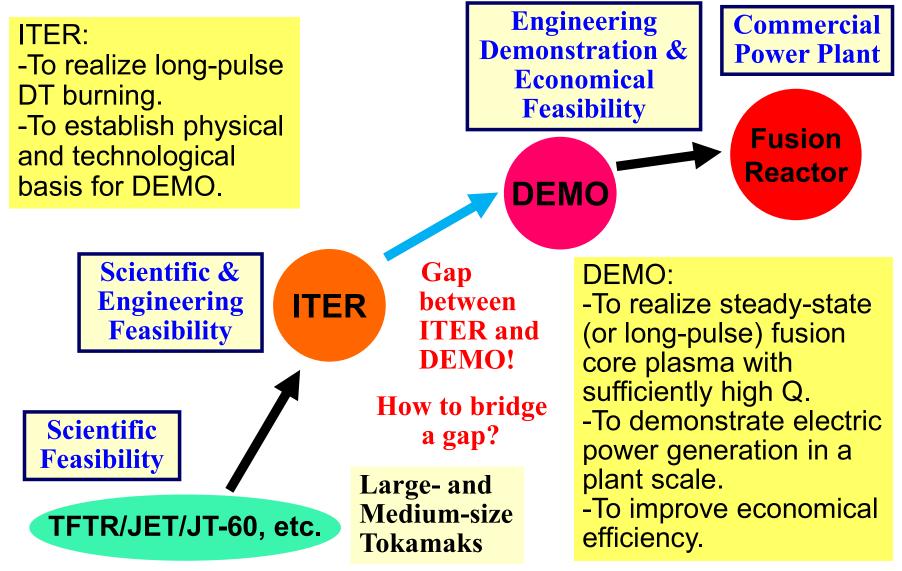
(4) An Integrated Preparation Scheme to Build DEMO

We will further promote the Fusion R&D activities toward DEMO.

27

Thank you for your attention!

Acknowledgments


Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplements

Target Plasma Performance: ITER, JT-60SA & DEMO

Device	ITER	JT-60SA	JA-DEMO
Plasma Current Ip	15.0 MA	5.5 MA	12.3 MA
Toroidal Field B_T	5.3 T	2.25 T	5.94 T
Plasma Pressure β_N	1.8-3.0	2.8-4.3	3.4
Fusion Output	0.5 GW (Q _{DT} =10)	$D(Q_{DT}^{eq}=1)$	1.46 GW (Q _{DT} =17)
Major Radius Rp	6.2 m	3.0 m	8.5 m
Minor Radius a	2.0 m	1.1 m	2.4 m
к (= b/a)	1.7	1.87	1.65
le b Rp a			

Major Devices toward a Fusion Reactor

Phased R&D Programs toward Fusion Energy in Japan

In the Past

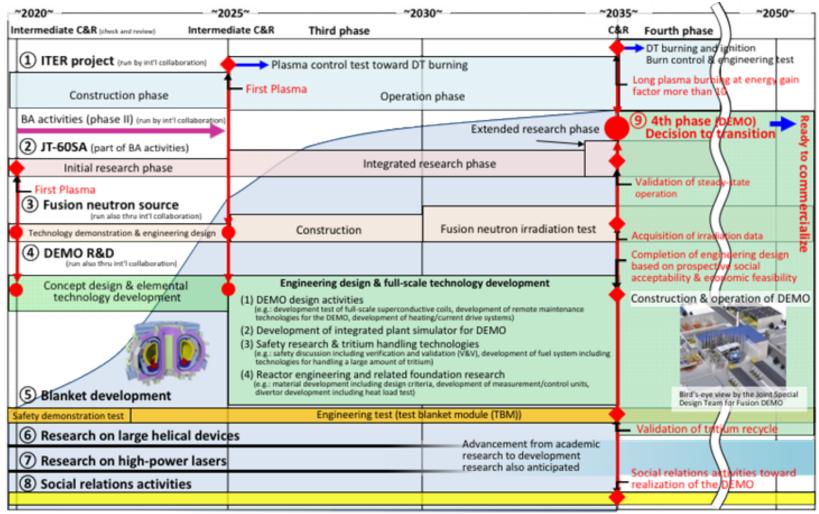
In 1968-1974, the 1st Program

Mission: Improve Confinement Performance = Construction of Small/Medium Size Tokamaks In 1975-1991, the 2nd Program Mission: Achieve the Breakeven Plasma = Construction of JT-60 (1985-2008) In 1992- now, the 3rd Program (effective) Mission: Achieve the high-Q Steady-state DT Burn

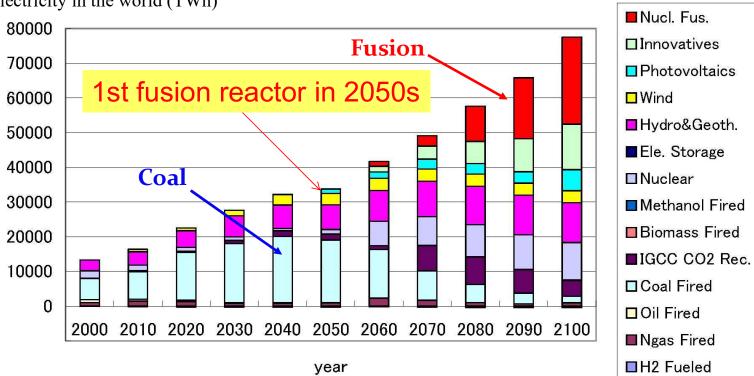
= Construction of Experimental Reactor (=ITER)

In the Future

If the scientific, technological, and social conditions are satisfied, ...


In 2030s, the 4th Program will start.

➔ Construction of DEMO


JFT-2

Japanese Roadmap toward DEMO

- When to achieve the target
 Target to achieve
- Legend When to decide transition to the next phase
 - Figure of activities required

Introduction of Fusion Energy into the World Energy Market

Electricity in the world (TWh)

(a) In the case of 550 ppmv CO_2 concentration constraint.

(a) Future energy demand is assumed to be the case of IS92a.

(a) In nuclear fusion the cost of electricity (COE) in the introduction year (i.e., 2050)

is assumed to be 65 mill/kWh,

TOKIMATSU, K., et al., Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model, Nuclear Fusion 42 (2002), 1289.

Check & Review Items, Works, and Criteria (1/4)						
Items	1st C&R(~ 2020)	2nd C&R (~ 2025)	Criteria for transition to DEMO (2030s)			
(1) Validate burn control in the self-heating area by ITER	- Create a technical target achievement plan for ITER.	- Conduct collaborative research based on the ITER technical target achievement plan.	- Maintain fusion power of Q=10 or higher (for over several hundred seconds) and validates burn control in ITER.			
technique tor	- Proceed with ITER collaborative research and preparatory studies on stationary high-beta plasma and start JT-60SA research.	current drive in JT-60SA. - Have integrated simulations including the divertor verified by JT- 60SA and other projects. - Create a plan for JT- 60SA divertor research compatible with the DEMO reactor's plasma-	 Gain prospects for non- inductive steady operation by achieving non-inductive current drive in ITER, and integrated simulations based on ITER knowledge of burn control. Validates the stationary operation of a high-beta (βN = 3.5 or higher) collisionless plasma in JT-60SA compatible with the DEMO plasma-facing walls. 			

Charle & Daviow Itams Works and Critoria (1/1)

Check & Review Items, Works, and Criteria (2/4)					
Items	1st C&R(~ 2020)	2nd C&R (~ 2025)	Criteria for transition to DEMO (2030s)		
(3) Establish integrated technologies by ITER	- Establish manufacturing technologies for SC coils and other key components and build an integrated technological foundation through the construction of JT-60SA.	install and adjust the ITER	- Establish integrated technologies through ITER operation and maintenance and confirm the safety technology.		
(4) Develop Materials for the DEMO reactor	ferrite steel (LAFS) up to 80 dpa and finalize the materials for testing under a neutron irradiation	materials by reactor irradiation and validate the principles of Li- securing technology. - Start the construction of a fusion neutron source and create a plan for collecting	- Establish Li-securing techniques on a pilot- plant scale.		

Check & Review Items, Works, and Criteria (3/4)					
Items	1st C&R (~ 2020)	2nd C&R (~ 2025)	Criteria for transition to DEMO (2030s)		
(5) Develop reactor engineering for DEMO	divertor development strategies. - Create technical development plans for reactor engineering requiring early preparation, including SC coil technology. - Collect the necessary data for blanket design from the cold testing facilities	 properties of the plasma-facing materials in JT-60SA, LHD, etc. Create development plans for the SC coil, divertor, remote maintenance, heating/current drive, fuel system, measurement/control, etc. for the engineering technology of a medium- or plant-sized reactor, and complete the concept designs of these items for the development test facilities. Establish basic technology for the power generation blanket, build the first ITER-TBM, and complete the safety verification tests on the actual 	- Establish reactor engineering technologies that support DEMO reactor design, including such items as the SC coil, divertor, remote maintenance, heating/current drive, fuel system and measurement/ control, based on the outcomes of the development test facilities		

Check & Review Items, Works, and Criteria (3/4)

Check & Review Items, Works, and Criteria (4/4)

Items	1st C&R(~ 2020)	2nd C&R (~ 2025)	Criteria for transition to DEMO (2030s)
(6) Design the DEMO reactor	objectives for the DEMO reactor. - Draw up a basic concept design of the DEMO reactor. - Submit requests regarding reactor core and	standards and economic feasibility by incorporating reactor core and reactor engineering developments. - Identify issues in developing reactor core and reactor engineering to establish a technological foundation for engineering design and create a	 Acquire social acceptability, confirm economic feasibility at the stage of practical use, and complete the DEMO reactor engineering design by coordinating reactor core and reactor engineering developments. Draw up policies on safety laws and regulations.
(7) Establish Public Acceptance	 Establish a headquarters for promoting social awareness. Draw up an awareness activity promotion plan. 		

An Example of Action Plan – DEMO Design (1/2)

Black: Kick off of Items

Red : Close o		020~	2025~ 2035~
DEMO Design	Conceptual Establish phys.& eng. guideline Definition of safety policy Database(DB) of physics	design Prepare for licensing s, engineering & materials	Engineering design Site asses. Const. design Decision of site assess. for site safety DB update w/JT-60SA & irrad. results
Concept & Construct. Plan	 (15)S: Phys.& eng. Guideline (19) (15)S: Basic design of concept (19) (16)S/TF: Fuel cycle strategy (17)Q/N/U/S: Integrated simulator (18)S/D: Cost evaluation 	(20)S/D: Conceptual design > (> ((23)S/Q/F: Rev. of target plasma (26)	(27)D/S: Design of Demo core parts (35)
Equipment Design	(15)S/Q: Basic design of SC (19) (19)S/Q: Demo TBM targets (19) (17)S/D: Equip. config. w/ BOP (19)	(21)S/D: Conceptual Design BOP (26)	of (for site asses.) (27)D/S: Plant design,(31) (27)A/S: Reg & stand (31) (after site candidates) (32)D/S: Design plant (35)

Responsibility: S - Special Design Team, Q – QST, N – NIFS, U – universities, D – manufacturing companies, G – Japan. Gov. 39

An Example of Action Plan – DEMO Design (2/2) Black: Kick off of Items

Ped · Close of items

Red : Close of		020~	2025~	2035~
DEMO Design	Conceptual Establish phys.& eng. guideline Definition of safety policy Database(DB) of physics	design Prepare for licensing s, engineering & materials	Engineer Site asses. Co Decision of assess. for s DB update w/JT irrad. results	of site ite safety
Safety Policy	(16)S/D: Draft safety policy (19)	(20) S/D: Asses. of Safety aspect (20)S/D: Asses. of Safety aspect (26) (20)TF/S: Draft for safety regulation (26)	(27)G/TF: Safety (35) (32)G: Safety ass	regulation
Database of Physics, Enginrg & Materials	(16)Q/U/F/S: Demo Phys. DB (16)Q/U/F/S: Eng. & Materials DB-	>(>(w/ results of JT- (32)Q/S: Update (35) w/ 14MeV heavy	1) 60SA material DB irrad data

Responsibility: S - Special Design Team, Q – QST, N – NIFS, U – universities, D – manufacturing companies, G – Japan. Gov. 40