Progress and Next Steps at TAE Michl Binderbauer | CEO | TAE Technologies

40th FPA ANNUAL MEETING | DECEMBER 4, 2019

Historical and future program overview

Continual progress towards advanced beam-driven FRC fusion

Major development platforms integrate then best design TAE's current machine • incremental bases for rapid innovation • First plasma July 2017 One vear construction · On time, on budget Copernicus entering phased sequence of · Scaling studies ongoing reactor performance experiments Copernicus Norman (C-2W) Reactor Plasma **C-2U** A. B. C-1 C-2 Collisionless Confinement Performance operating Early development First full-scale machine Plasma Sustainment Scaling on hydrogen plasma 1998 - 2000s 2009-2012 2013-2015 2016-2019 2020+

Norman Program Update

Norman Goals

Explore beam driven FRCs in fully collisionless regime

- Principal physics focus on
 - scrape off layer and divertor behavior
 - ramp-up characteristics
 - transport regimes
- Specific programmatic goals
 - demonstrate ramp-up and sustainment for times well in excess of characteristic confinement and wall times
 - explore energy confinement scaling over broad range of parameters
 - core and edge confinement scaling and coupling
 - consolidated picture between theory, simulation and experiment
 - develop and demonstrate first order active plasma control

NORMAN (C-2W) — TAE's 5th generation

End divertor

New magnet system for field ramp & active control

Upgraded formation sections: ~15 mWb trapped flux

Magnetic Field

Plasma dimensions – r_s , L_s

Density – n_e

Temperature – T_{tot}

up to 0.3 T

0.4, 2-3 m

1-3×10¹⁹ m⁻³

up to 3 keV

Norman - Neutral Beam System

	C-2U	Norman
Beam Energy, keV	15	15/15-40
Total Power	10	21
# of Injectors	6	4/4
Pulse, ms	8	30
lon current per source, A	130	130

- Centered/angled/tangential neutral-beam injection
 - angle adjustable in range of 15°-25°
 - injection in ion-diamagnetic (co-current) direction
- High current with low/tunable beam energy
 - reduces peripheral fast-ion losses
 - increases core heating / effective current drive
 - rapidly establishes dominant fast-ion pressure for ramp-up

Google collaboration on diagnostics post processing Offers unique insights into internal plasma perturbations

- High fidelity holistic 3-D plasma reconstruction
- Internal dynamics of plasma perturbations now visible
- Work underway to exploit insights for further feedback optimizations

Norman divertors provide excellent edge insulation

Energy loss per electron/ion pair near theoretical minimum

- Flaring magnetic fields
 - limit debye sheath voltage at the material boundary
 - minimize cold electron back streaming
- Extensive vacuum pumping
 - evacuates cold gas
 - minimizes cold ion population from ionization
- Bias electrodes improve stability and transport
- Electron energy loss per ion near ideal level
 - measured by energy analyzers in outer divertors
 - $4-8 T_e$ in Norman (compared to ~30 for C-2U)

Towards longer pulse operation 1/2

Continuous optimization of FRC lifetime and ramping studies

- Exciting performance
- Compared to C-2U device
 - 3x longer plasma life
 - 4-5x higher temperature
 - 4x higher plasma energy
- Robust macro-stability
- Confinement scaling consistent with prior data and modeling

Towards longer pulse operation 2/2

Continuous optimization of FRC lifetime and ramping studies

- Externally ramped magnetic pressure balanced by internally growing fast ion pressure
- Magnetic energy increases by 2-3x over the 30 ms shot
- Neutron signal good proxy for fast ion accumulation: D_f + D_i → ³He + n
- Further optimization underway, including active magnetic control

Sustained plasma is stable and robust

Global modes are suppressed throughout the discharge

- Mode amplitude > 10 G at wall becomes destructive
- Mode amplitude < 3 G
 - experimentally benign
 - consistent with theory
- Magnetic probe noise ~ 1 G

Tunable beam ramp-up experiments

Operation with intra-shot variable beam power

- Reversal of plasma radial decay within shot now possible by increasing beam power
- Optimized beam-plasma coupling efficiency
- Beam performance adjustable by feedback control system

12

Active feedback control - flux conservation

- Active feedback via
 - tunable beams
 - electromagnetic shearing near plasma edge
 - magnetic shape and position controls
- Flux-conserver emulation studies
- Active current control of equilibrium and mirror coils
- Further control flexibility with trim coils to come soon

Active feedback control - plasma shape

- Plasma shape actively controlled via current modulation of equilibrium and mirror coils
 - for example plasma radius maintained at ~0.35 m
- Plasma position control via saddle and trim coils
- Active feedback control of NBs and electrodes in process

Next Steps

Summary of Progress on Norman

Basic proof of scientific feasibility established, meaning

- Transport scaling developed for collisionless regime
- Macroscopically stable operation
- Active feedback control demonstrated
- Heating and current drive demonstrated
- Open field line/SOL/divertor thermal insulation demonstrated

Overall system integration principles and control established

Copernicus

Reactor scale plasma performance platform

Design development ongoing

- 10+ keV ion temperature goal
- Hydrogen only operation

Budget and timing

- < \$250 MM cap-ex estimate
- Construction to begin in 2020
- Commissioning and ops by 2023

17

Beyond Fusion Spin-off technologies

Boron Neutron Capture Therapy (BNCT)

Beam technology adapted to compact epithermal neutron sources

- Existing cancer treatment, but only available at research sites with a nuclear reactor
- 3x efficacy of x-ray and proton treatments
- Requires only one 30 min treatment
- IV-based vector drug delivers
 Boron-10 to tumor cell
- Effective in treating head and neck cancers (\$30 BN market)

TAE Life Sciences

Creating a paradigm shift in radiation oncology

- TAE beam technology revolutionizes BNCT
 - enables cost-effective installations
- TAE majority owned company
- Provides complete solution drugs to beams
- First clinical system in delivery first patient treatment in Q1/2020
- Growing order book in Asia, EU, US

Power management opportunity

Derived from Norman power supply development

Modular distributed energy topology with advanced control algorithm

Storage, Control and Converter autonomous module for distributed energy & control network

- High energy storage
- · High power demand
- Flexible load matching
- Excellent energy efficiency & utilization
- Critical reliability & uptime capability

Power Management Technology Market

TAE global power technology vision

