

Overview of the Fusion Program in China

B. N. Wan

Institute of Plasma Physics, Chinese Academy of Sciences

Fusion as an important part of the national strategic in clean energy

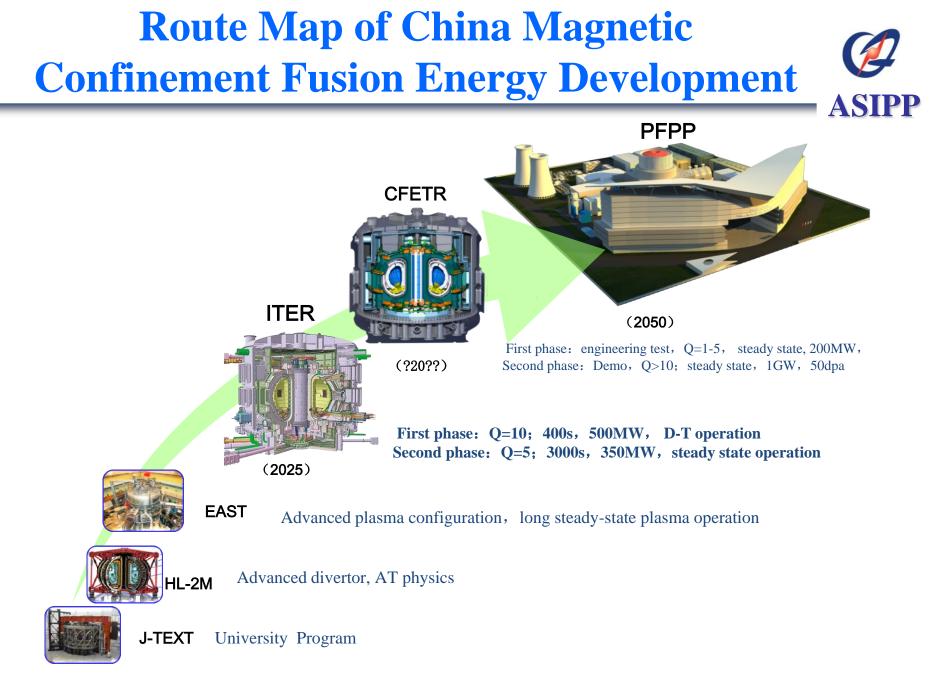
国家中长期科学和技术发展规划纲要 (2006-2020年) Outline of nation S&T development		国务院 State council
国务院关于印发国家重大科技基础设 施建设中长期规划(2012-2030年) Plan for large scale science facilities	国发〔2013〕8 号	国务院
国务院关于印发"十三五"国家科技创 新规划 Plan of S&T innovation for 13 th 5 year	国发〔2016〕43 号	国务院
能源技术革命创新行动计划(2016- 2030年) Acting plan for energy technology innovation	发改能源〔2016〕 513号	国家发展改革委 /国 家能源局

Fusion research is included in national science and technology developing plan and national innovation acting plan/program in clean energy National Magnetic Confinement Fusion Science Program in 12th 5 year plan

- Supported R&D needed for ITER PA of China
- Supported research capability enhancement of EAST/HL-2A
 >Heating, diagnostics, in-vessel components, control...
- Supported domestic research program on EAST/HL-2A
 >ITER-physics including Modeling and simulation
 >International collaboration including ITPA→CTPA
- Supported conceptual design and some R&D of CFETR
- Supported education and training program for MF community
 >University program (JTEXT, KTX, SUNIST)
- Supported material and other key R&D
 Material research, remote handling, W-mono-block...

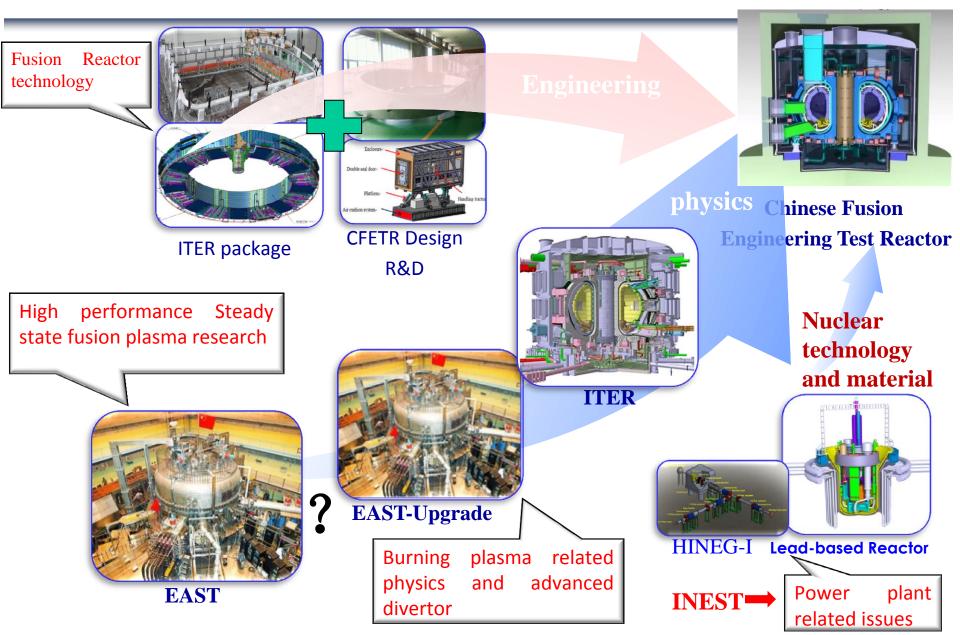
National Magnetic Confinement Fusion Science Program will be continuued in 13th 5 year plan

It is emphasized to support ITER and CFETR related activities


• ITER construction and operation

>PA of China, ITER physics and preparation of operation...

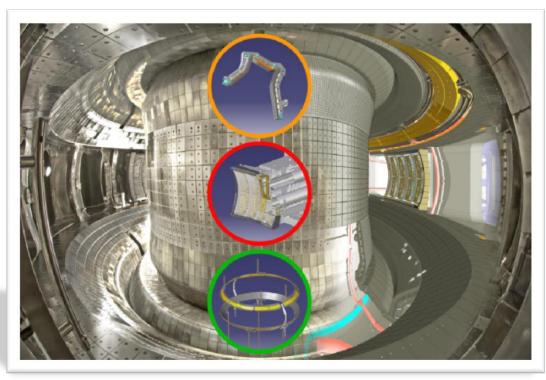
- CFETR engineering design and key R&D
 - Engineering design


>Key technologies and physics to support design

- Key physics and technologies on EAST/HL-2A/2M to support ITER operation and CFETR design (including model validation)
- Education and training program for MF community

Strategy of magnetically confined fusion and advanced nuclear energy research in ASIPP

Under support of National Magnetic Confinement Fusion Science Program EAST/HL2A research capabilities have been significantly enhanced

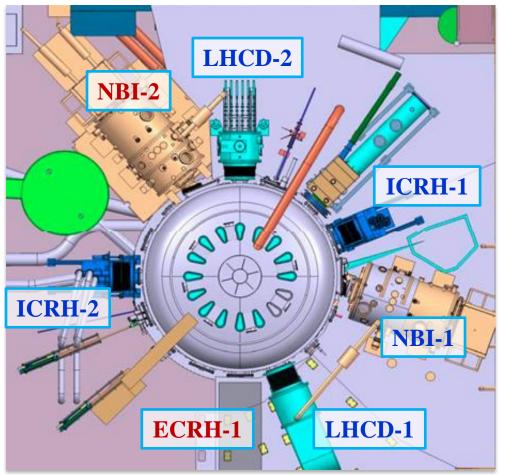

EAST for high performance steady state operation

Upgrade

Significant engineering efforts have been made for high performance long pulse operation.

Provide supporting for ITER & CFETR

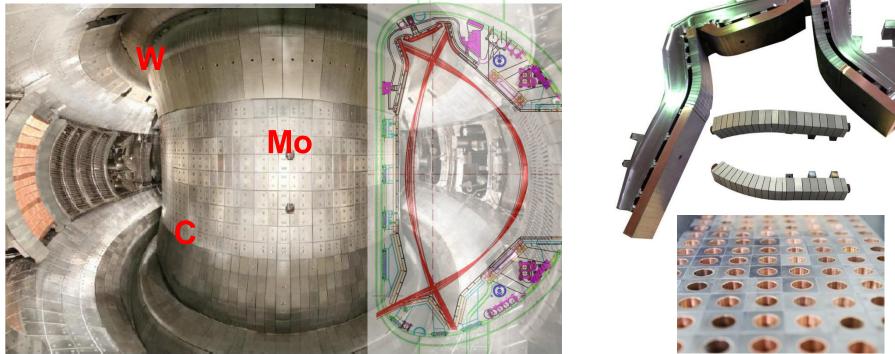
T _{coil} (K)	4.5	3.8
B _t (T)	3.5	4.0
I _p (MA)	1	1.5
R ₀ (m)	1.8	1.8
a (m)	0.45	0.45
К	1.2–1.8	1.2–2
δ	0.3–0.6	0.3–0.6
τ (S)	1000	1000


Nominal

EAST is the fusion device in the world capable of long pulse high performance operation with dominated electron heating (as in ITER) to challenge power and particle handling at high normalized levels (10 MW/m²) comparable to ITER.

Heating & CD

9

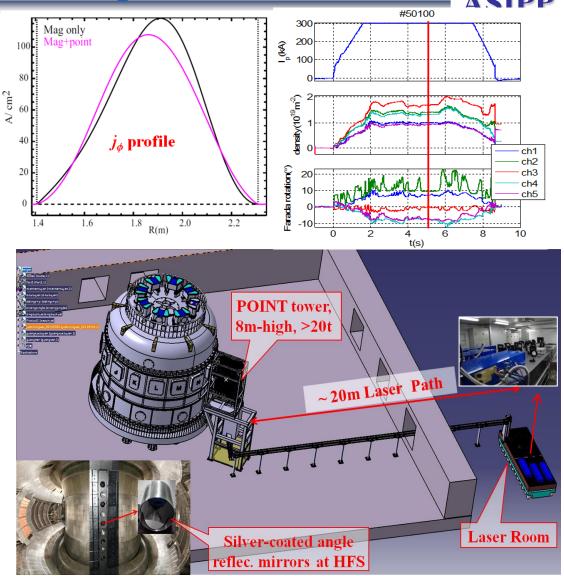

LHCD 4+6 MW(2.45/4.6GHz)

- Fast Electron Source
- Edge Current Drive /Profile
- ICRH 6+6 MW (25-75MHz)
- Ion and Electron Heating
- Central Current Drive
- NBI 4+4 MW (co/counter, 80kV)
- > Sufficient power to probe β limit
- Variable rotation/ rot-shear
- ECRH 2(4) MW (140GHz)
- Dominant electron heating
- > Steering mirror, j_{ϕ} tailoring

ITER-like RF-dominant H&CD, capable of high performance SS operations
 Each individual power is sufficient to access H-mode plasmas

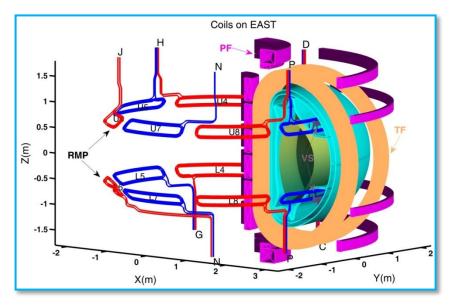
PFC Upgrade Facilitates for High Power Longpulse Operations ASIPP

2014: W + Mo + C



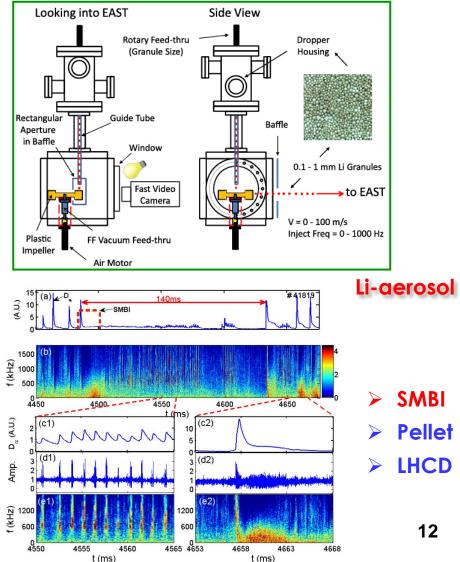
- ITER-like cassette body structure with actively water cooling
- ITER-like W mono-blocks:
- Divertor targets (10 MW/m²)
- Flat type W/Cu PFCs:
- Divertor dome and baffles (5 MW/m²)

Diagnostics for key profiles covering from core to edge


> Polarimeter interferometer **(POINT):** n_e, j_ϕ, q, B_p profiles \succ Core & edge TS: T_e, n_e **AXUV & Bolometer:** radiation >CXRS & XCS: T_i, rotation SXPHA & ECE: T_e > **Reflectometry:** pedestal n_e \rightarrow He-BES: edge n_e, T_e **Recip.-LPs:** SOL n_e , T_e , flow **Filterscope:** D_a , impurity >Bremsstrahlung: Z_{eff} **FIDA:** V_{fast-particle} ➤ High speed CCD **IR camera:** heat flux **Div-LPs:** div. particle/heat flux **Total: 76 diagnostics**

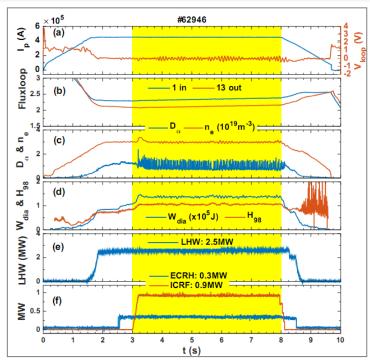
Collaborative efforts

Technology for ELM control

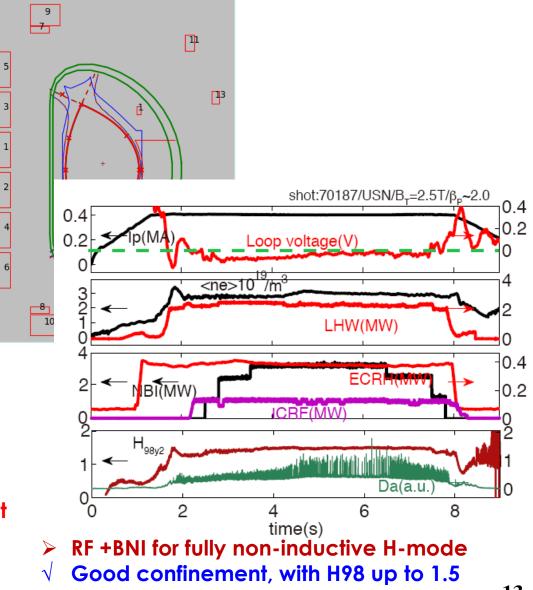


RMP coil set-up: 8 (U) + 8 (L)=16 coils; n = 1-3 rotating and n=1-4 nonrotating.

□ Multi-Functions:


Error Field correction (EFC)

- Resistive Wall Mode (RWM Control)
- Edge Localized Mode (ELM Control)
- **≻**3-D physics studies

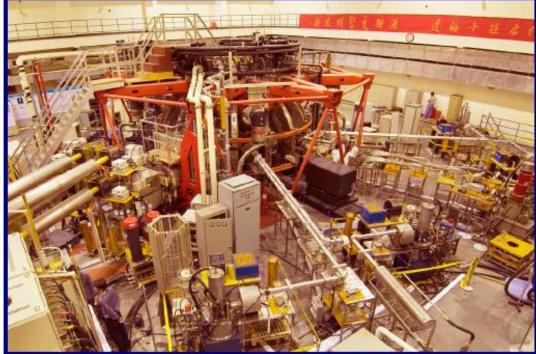


Operation Scenarios of Fully Non-Inductive H-mode has been developed

3

- **USN with W-Divertor**
- **Fully Noninductive H-mode**
- RF only (no torque input)
- Good confinement, H98≤1.2
- **High heat-load resistant**
- Hot spot on RF guide-limiter prevent Х long-pulse operation

Demonstration of >60s H-mode discharges



Good control of impurity level

Divertor heat flux was mostly controlled below 2.0 MW/m²

HL-2A tokamak-present status

• <i>R</i> :	1.65 m
• a:	0.40 m
•Bt:	1.2~2.7 T
• Confi	guration:
Lim	iter, LSN divertor
• <i>lp</i> :	150 ~ 480 kA
•ne:	1.0 ~ 6.0 x 10 ¹⁹ m ⁻³

Auxiliary heating: ECRH/ECCD: 5 MW (6 X 68 GHz/500 kW/1 s, 2 X 140 GHz/1000 kW/1 s) NBI (tangential): 3 MW

LHCD: 2 MW (4/3.7 GHz/500 kW/2 s)

More than 30 kinds of diagnostic systems with good spatial-temporal resolution Fueling system (H₂/D₂): Gas puffing (LFS, HFS, divertor) Pellet injection (LFS, HFS) SMBI (LFS, HFS) LFS: f =1~80 Hz, pulse duration > 0.5 ms gas pressure < 3 MPa

Highlights on HL-2A in recent years

H-mode Physics

ELM mitigation by SMBI: Two types of LCOs during L-I-H Role of MHD mode in triggering I-H transition Quasi-coherent modes before and between ELMs

Zonal flow & turbulence

Nonlinear energy transfer from turbulence to ZFs 3D GAM/LFZF Blobs & filaments

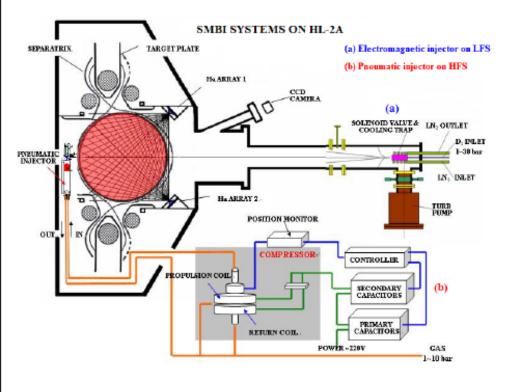
Transport & confinement

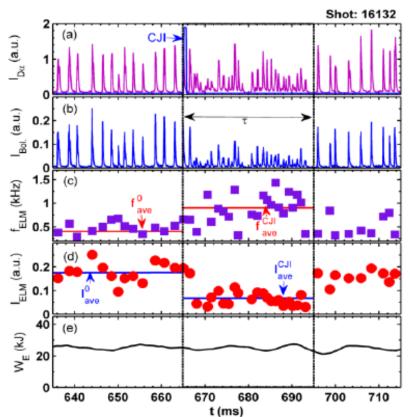
Spontaneous particle transport barrier Core turbulent transport Non-local transport triggered by SMBI Fueling by cluster jet injection

MHD activities

BAE excited by energetic electrons Interaction between AEs and magnetic island EGAM during magnetic island Frequency jump of e-fishbone mode Interaction between NTMs and non-local transport

SWIP Southwestern Institute of Physics

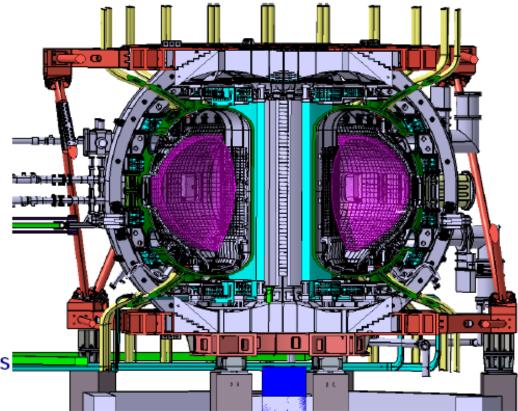

SMBI/CJI Fuelling Technique


Supersonic Molecular Beam Injection (SMBI) & Clusters Jet Injection (CJI)

Proposed by Prof. L H Yao at SWIP and applied on HL-1 in 1992 applied on HL-1M, W7-AS, Tore-Supra, KSTAR, EAST etc.

ロ酸集団

High fuelling efficiency are due to the directional particle motion and the post-SMBI inward convection.


这 e ML-2M tokamak under construction

Mission: high performance, high beta, and high bootstrap current plasma; advanced

divertor configuration (snowflake, tripod), PWI at high heat flux.

Main parameters

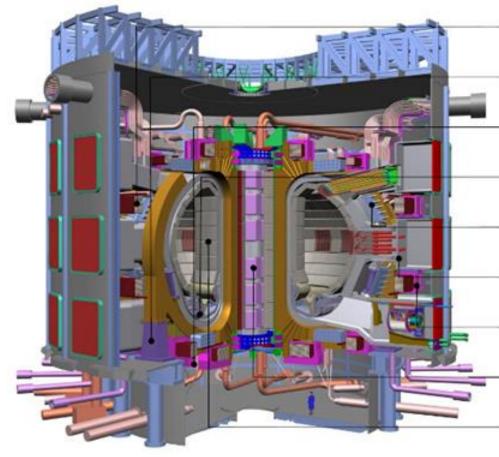
	Plasma current	I _p = 2.5 (3) MA
	Major radius	R = 1.78 m
	Minor radius	a = 0.65 m
	Aspect ratio	R/a = 2.8
	Elongation	K = 1.8-2
	Triangularity	δ > 0.5
	Toroidal field	B _T = 2.2 (3) T
	Flux swing	ΔΦ= 14Vs
	Heating power	25 MW
ŀ	Auxiliary Heating	Systems & Diagnosti
T	otal power ~ 25	MW

developed 2MW LHCD + 2 MW ECRH

HL-2M tokamak

under developing 5MW NBI + 2MW ECRH + 2MW LHCD

A new reversed field pinch KTX device in China


- Supported by National Magnetic Confinement Fusion Science Program (2011-2015)
- Construction completed in Aug. 1, 2015; First plasma achieved in Aug. 15, 2015
- **In conditioning:** Max 200kA, Max pulse length 22ms, typical RFP discharge

ITER related activities

ITER PA of China

- •68% PF conductor
- •100% CC
- -• 100% current lead
 - Glow Discharge Cleaning
- →68% Power supply
- •ELM coil
- 100% Feeder system
- →7% CC Conductor
- → 50% shield blanket

ITER packages in ASIPP

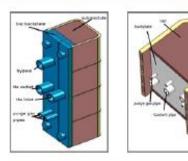
Superconducting Conductors

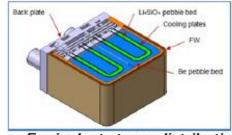
ITER Feeder 68 kA HTS current lead

ITER feeder system

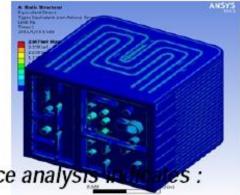
ITER Power supply

All in mass-production phase and on schedule. Part of components and equipment on ITER site

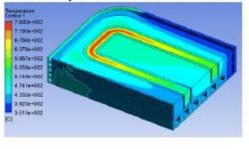


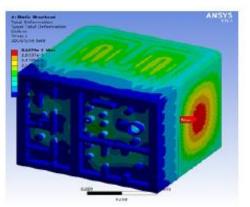


CN-ITER-TBM


Conceptual design of HCCB

Neutron wall loading	0.78MW/m ²	
Surface heat flux	0.3MW/m ²	
Total heat deposition	0.75MW	
Tritium breeder	Li4SiO4 pebble 80% 6Li enrichment 62% packing factor	
Neutron multiplier	Be pebble 80% packing factor	
Structural material:	RAFM steel	
Coolant Temp. (inlet) /(outlet)	He gas, 8.0MPa, 300ºC/500ºC	
Tritium purge gas	He gas ~0.1MPa	
Total weight: Structural material Functional material	~1.32 tons ~0.20 ton	




Equivalent stress distribution

Temperature distribution

Deformation distribution

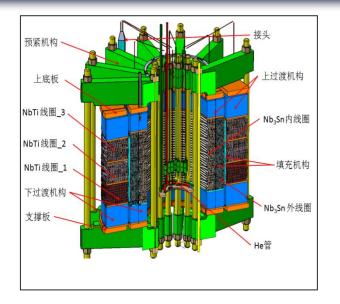
Performance analysis

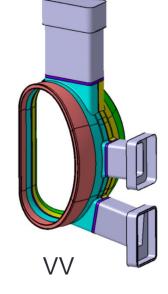
CN-HCCB-TBM satisfies the design requirements of ITER and passed the conceptual design review.

CFETR Activities

Conceptual design and R&D of CFETR

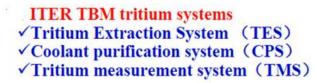
Chinese Fusion Engineering Testing Reactor address two fusion reactor issues: Tritium self-sufficiency and steady-state operation.

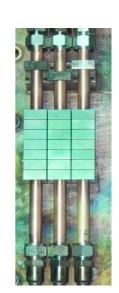



Vacuum vessel R&D

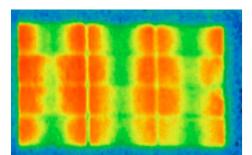
Magnet winding platform

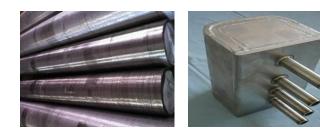
R&D is progressed

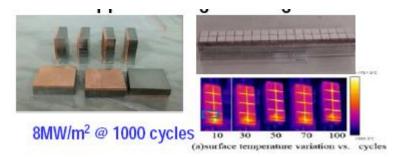



4.6 GHz, 0.3MW 140GHz, 1MW, CW

CS Model Coil – Nb₃Sn






Monoblock W/Cu 5000 cycles at 10MW/m² 300 cycles at 20MW/m².

Materials

W/CuCrZr flat type, CFC/CuCrZr modules

CLAM for TBM

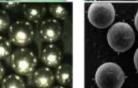
Functional materials

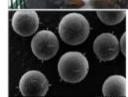
Li₄SiO₄ pebbles for tritium breeder

Be pebbles for neutron multiplier

Li4SiO4 pebbles via melt-spray

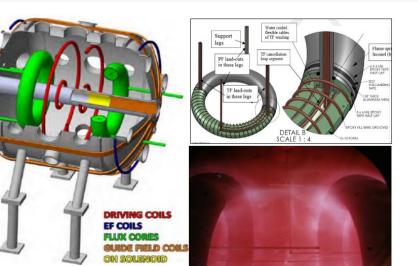
Beryllium electrode



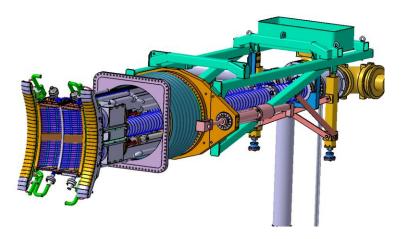


University groups also deeply involved in material research

CFETR 5 years Plan


- Refine self-consistent, reliable physical design
- Detailed engineering design (main machine and auxiliary systems)
- R & D for some key technologies and systems
 - (I): Blanket related to nuclear, thermal hydraulic processes
 - (II): magnets、T- factories、NBI, ICRF, ECRH、RH
 - (III): Experimental verification, diagnosis, control, divertor,

cryogenic, radiation protection and so on.



International collaboration

Engineering contribution to world fusion community

PPPL FLARE PROJECT

WEST&ASDEX-U ICRF antenna systems

ASIPP

GA CSM FEEDER

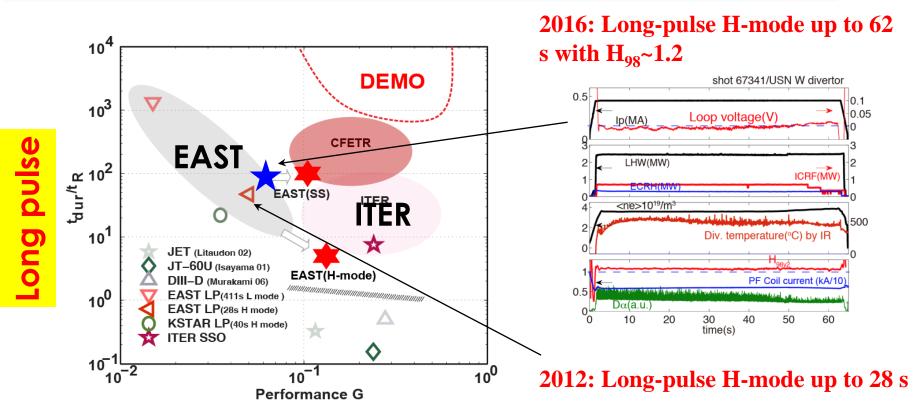
DIII-D 3D Coils Power Supply 31

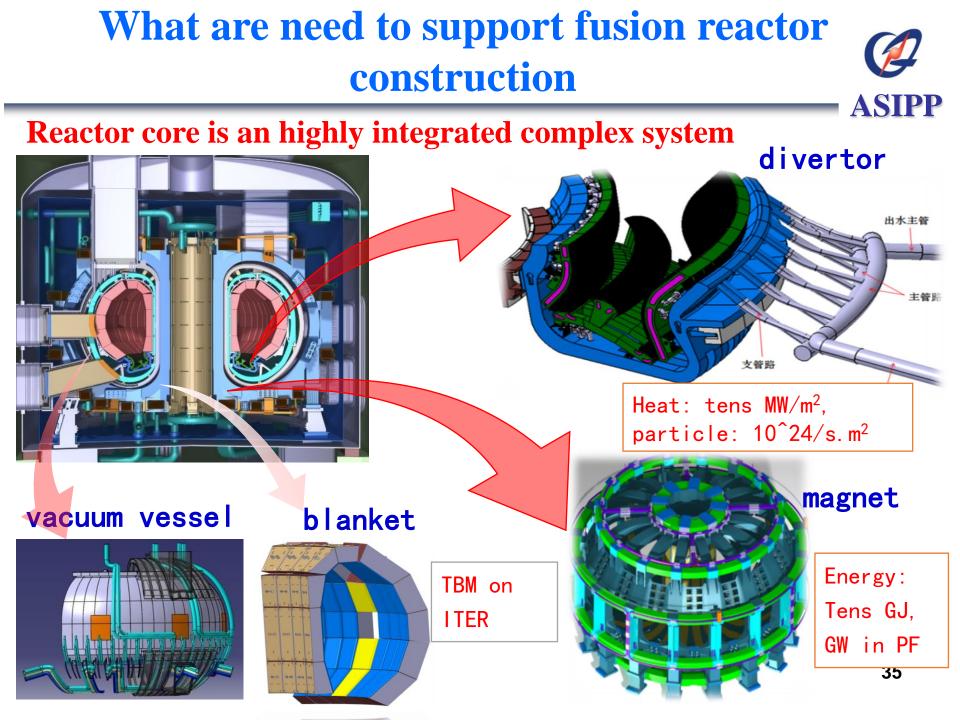
Remote third shift operation on EAST

ASIPP

First US-led 3rd Shift Experiment without U.S. Staff at ASIPP

- Experiment on Thursday, April 28, 2016, was very successful
 - Six-hour session, 26 tokamak pulses, highest-priority experiments completed
 - Good GA-ASIPP staff communications and EAST data transfer to US
 - No significant impact to GA staff or added cost from EAST schedule changes
 - Experiment focused on empirical scalings of error field thresholds for ITER

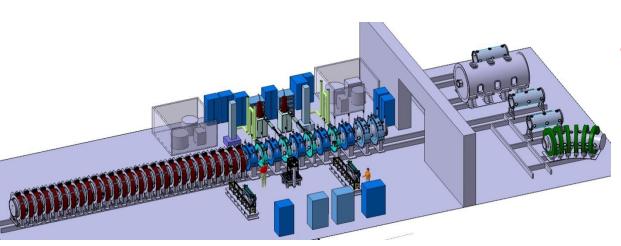

Also Collaborative center with WEST Broad participation from US, EU and A3 program on EAST


Near Future Research Plan

EAST steady-state scenarios supporting ITER and CFETR

- ➤ Long pulse H-mode plasmas(≥100s) with integrated control of heat/particle flux and ELM mitigation
- Scenarios of steady-state high performance plasmas (H₉₈>1.2)
- Long pulse for > T_{wall} to address critical issues of recycling and heat exhaust
- Lower divertor solution

ASIPP


We proposed... and agreed by...

Superconductor and magnet testing facility

- R&D for CFETR
- For other large scale application
- New technology

High heat and particle flux testing facility

- Divertor material
- Module testing
- Basic plasma

Future Activities

1. Efforts on EAST/HL-2M to deliver key physics for ITER and CFETR steady-state operation and beyond

- Plasma control
- •Development of steady-state operation scenarios
- Heat and particle exhaust: PWI issues with tungsten divertor (ITER-like)
 Heating and current drive, and diagnostics
- •Theory and simulation, model validation via experiment

2. Fusion nuclear science and engineering for CFETR

- Conceptual design and optimization (System study and optimization)
- Engineering design and key R&D
- Nuclear science and technology (tritium breeding blanket)
- Materials

3. Education and young scientist training

- BPF for universities
- International collaboration

Thank You