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1. With NDCX-II, we have achieved 2 A peak currents for ns pulses 
of 1 MeV He+ ions

• 1.1 MeV (He+), 12 nC in whole bunch 
(7.5x1010 ions)  à 13 mJ

• ~100 mJ/cm2 @ peak, 2 mm FWHM
• Uniform energy deposition into a 2 micron 

silicon foil with ~ 6x103 J/cm3
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Seidl, et al., NAPAC’16 https://arxiv.org/abs/1610.05253, 
IFSA’15 http://iopscience.iop.org/article/10.1088/1742-6596/717/1/012079



Particle-in-cell simulations validate our understanding of the high intensity beam 
physics and help optimize the performance of the accelerator for target 

experiments
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1. Beginning with model of 
plasma ion (He+) source 
injection, the experiment 
voltage waveforms are 
imported from DAQ 
database & applied to the 
2D Warp simulated 
beam…

ê

-- V(t) from database
-- Warp modeled beam

3. Results are directly compared 
to the experiment beam            à
diagnostics.  From these, adjust 
focusing, waveforms, timing, then 
go to #1.

-- Experiment diagnostic
-- Warp modeled beam

2. Snapshot of the X-Z 
projection shows rms
properties & halo particle 
loss… ê

Applied accel and 
bunching V(t) from 

database

≈10 min/run/processor, we do ≈10 
parallel simulations, vs 1 shot/min in 
the experiment



Fast Faraday cup
Q = 4 nC, 6 ns FWHM 

Heating 0.3-µm foil Tin with a short-pulse helium beam 
shows the onset to the melting phase

à
ß
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Peak fluence: 
0.035 – 0.045 J/cm2

E = 0.8 MeV

Scintillator image

Foil under microscope
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Structural changes , holes in Sn foil (0.5 µm) after uniform  
heating with Qtot = 12-nC/beam pulse 
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• Multiphysics modeling with 
arbitrary Lagrangian Eulerian 
hydrodynamics with adaptive 
mesh refinement (ALE-AMR), 
Koniges, et al, Plasma Sci. 
Tech., 17 (2) 2015 

• Sensitive to solid-solid and 
solid-liquid phase transitions.  

• Ion interactions with liquid 
films à plasma facing 
components.

• Up next: Sn phase 
transitions, Si membrane, 
energy loss in band-gap 
materials, streak 
spectroscopy, channeling…

1.15	MeV He	on:
800	nm	Au
400	nm	Si
2000	nm		Al
120	nm	Pt
500	nm	Sn
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We now measure energy loss of transmitted ions in heated 
foils via time-of-flight
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12 nC
He+

scintillator

0.5 µm Sn

FC-t

FC-d

Exploring 
dose rate 
dependence

Data analysis underway

Opportunity to probe material response to short-
pulse ionizing radiation (t, l), e.g., channeling of 
ions in crystals



Intense, Short Ion Pulses are Unique Tools for Materials Science, Studies of Phase-
Transitions and Warm-Dense Matter Research

Lower intensities:
defect dynamics in materials

• Ions deposit energy via collisions with target electrons and nuclei
• Uniform, volumetric heating with ion energies near the Bragg peak in electronic stopping

Higher intensities:
processing, phase transitions and 

warm dense matter

NDCX-II -- now
BELLA-i -- soon 
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2. With Bella-i we are expanding science at the Bella petawatt laser 
to ion acceleration and high energy density physics
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For BELLA-i, Phase 1, we will use the existing long focal length 
beamline at BELLA and run experiments with solid targets

Intensity ~1019 W/cm2

13.5m

Electron acceleration
55 micron spot, 40 J, 1 Hz

For BELLA-i, Phase 1, we will use the long focal length beamline also 
for ion acceleration
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protons

carbon 

PIC simulations show directed, high charge ion pulses with 
energies up 15 MeV

• BELLA-i, Phase 1: 
• Target normal sheath acceleration (TNSA) 
• up to 1 Hz
• Transport ions to a second target

• Secondary focusing, bunching for 
applications 
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Proton 
spectrum



We can control the pulsed ion flux with a plasma lens from low flux to very 
high flux and heating to >10,000 K

Active plasma lens to focus an ion beam to a 500 µm spot 1 m downstream of laser-
target interaction:

Ion distribution at WDM target:

0.5mm

0.5mm

0.5mm

discharge 
current:

discharge 
current:

discharge 
current:

1012 ions in
3 ns, 0.25mm2

van Tilborg, Steinke, Leemans, et al. PRL 115, 184802 (2015)

plasma lens 
discharge current:
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We can access the structural evolution of materials under fusion relevant conditions by 
pairing an ion or plasma gun with fast structural probes, e. g. ultrafast electron diffraction

• in situ access to structural evolution of thin tungsten foils (~50 nm)
• vs. ion fluence (up ~1020 ions/cm2 over a few hours), ion energy, temperature, H 

or He, …
• UED with up to 1 MHz at Berkeley Lab, Daniele Filippetto, dfilippetto@lbl.gov 

pump: ion beam pulse

probe: high repetition rate, ultrafast 
electron diffraction
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3. We are developing scalable and compact ion beam 
accelerator technology for fusion and other applications
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• Pulsed induction linac (12 m)
• 1 MeV, 2 ns, mm, 2 A peak
• 200x drift compression
• P. A. Seidl et al. NIM A (2015)

• Radio frequency quadrupole (RFQ)
• 2 MeV, 0.01 A, cw
• 4 m long, 0.4 m cross section
• Z. Zouhli, D. Li et al. IPAC2014

How can we scale ion beam 
drivers to >1 MJ in µs 
pulses at low enough cost 
for MTF ?  (ARPA-E, a)

• High Current Experiment (~12 m)
• injection, matching and transport at HIF 

driver scale
• 1 MeV, 0.2 A, 5 µs, ~12 m
• 0.4 m cross section
• Kireeff-Covo, PRL (2006)



The MEQALAC concept (ca., 1980) exploited 
the multiple-beam concept for IFE.

14

Multiple-Electrostatic-Quadrupole-Array Linear Accelerator 

1980 Dimensions: ~ 1cm beam aperture, Quads length : ~cm

Thomae et al., Mat. Science & Eng., B2, 231 (1989)

Maschke, BNL-51022 (1979)



Accelerators with MEMS technology? Wafer-based RF 
acceleration uses a field-free drift region between wafers.
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Acceleration condition:
Drift = β λ/2

PC board 
implementation
using a 3x3 array for first 
experiments



Results from three stages of RF units agree well with 
simulations
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Developing Si-wafer quadrupoles, 3D-printed 
quadrupoles, on-board RF-generation (coplanar 
waveguides)

Solid lines show
simulations
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Exciting opportunity for fusion drivers and also non-fusion 
applications

Many beamlets and high 
beam power for plasma 
heating or fusion target 
heating.
There are many applications 
for this technology.
10µA-100mA, 1 to tens of MeV 
ions produced with low voltages 
(~kV) in a few meter long 
structure could be used for: 

o Ion beam analysis in material 
sciences 

o Ion implantation
o High yield neutron generators
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Ion acceleration in a scalable MEMS RF-structure for a compact linear accelerator, A. 
Persaud, et al., arXiv (2016)

Single PC board electrostatic quadrupoles 
show expected focusing behavior



We are using accelerators to address fusion energy 
challenges
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1. With intense ion beams @ NDCX-II 
we are exploring:
• Dynamics of radiation effects, 

benchmark codes 
• Phase transitions
• Fusion materials and plasma 

material interactions (PMI)
2. Laser generated ion beams @ Bella-i 

will explore (1st shots Jan. 2017): 
• PMI
• Warm dense matter and HEDP
• Novel laser generated ion beam 

mechanisms
3. Multi-beam, scalable and compact 

accelerators (ARPA-E, a) for fusion 
and other applications



Workshop on the

Dynamics of 
radiation effects in 
materials
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