Status of NNSA ICF Research on the NIF

Presented to Fusion Power Associates

Washington, DC

John Edwards

This talk will focus on progress in learning how to control drive symmetry

This was identified as a major factor limiting performance

Why is laboratory ignition hard? Requires high convergence – amplifies "errors"

$$E_{ignition} \sim \rho R^3 T \sim \frac{(\rho R)^3 T^3}{P_{stag}^2}$$

$$P_{stag}^2 \sim C R^6$$

X-ray drive on NIF requires CR ~ 30

 $*\rho R$ = Areal density

US ICF program evaluating 3 approaches

- different convergence ratios, pros and cons

X-ray drive LLNL NIF

Laser Direct Drive Univ. Rochester (Omega, NIF)

Magnetic drive Sandia Nat'l Lab Z-machine

 $E_{Fuel-NIF}^{2}$ ~ 15 kJ CR ~ 30 P_{ign} ~ 350 Gbar

 $E_{Fuel-NIF}$ ~100 kJ CR ~ 20 P_{ign} ~ 150 Gbar

 $E_{\text{Fuel-Z}}^{2}$ 100 kJ CR_{2D}^{2} 20 P_{ign}^{2} 5 Gbar

US ICF program evaluating 3 approaches different convergence ratios, pros and cons

X-ray drive

Laser Direct Drive Univ. Rochester (Omega, NIF)

Magnetic drive Sandia Nat'l Lab Z-machine

CR ~ 30

 $P_{ign} \sim 350 \text{ Gbar}$

E_{Fuel-NIF}~100 kJ CR ~ 20 P_{ign} ~ 150 Gbar E_{Fuel-Z}~100 kJ CR_{2D} ~ 20 P_{ign} ~ 5 Gbar

Principal challenges (as understood today)

- Drive symmetry Energy coupling
- Engineering features Implosion uniformity
- Fuel preheating
- **Radiation loss**

 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020

 NIC
 "Path Forward"
 ICF Framework

Execute NIC

NIC Pt design

Fell far short of ignition

Asymmetry and mix suspected but details not understood

NIC

"Path Forward"

ICF Framework

Execute NIC NIC Pt design

Fell far short of ignition Asymmetry and mix suspected but details not understood

"Path Forward"

Emphasis on understanding what's wrong Lower convergence, more stable design

Post NIC, "high foot" implosions performed better, > 2X alpha heating – no mix observed

High foot was more stable and lower convergence

Accomplished by laser pulse shape change

Better stability and lower convergence of high foot delayed onset of limiting factors

2014 summer study concluded: appears two major factors preventing ignition – others may be found

¹J.E. Field et al, Rev. Sci. Instrum. **85**, 11E503, (2014) ¹R. Tommasini et al, Phys. Plasmas. **22**, 056315, (2015) ²2D. S. Clark et al, Phys. Plasmas, **22**, 022703, (2014)

Are these fundamental limiters or can they be addressed?

This directed follow on research

NIC

"Path Forward"

ICF Framework

Execute NIC NIC Pt design

Fell far short of ignition Asymmetry and mix suspected but details not understood

"Path Forward"

Emphasis on understanding what's wrong Lower convergence, more stable design

- 26kJ yield, no mix (high foot) 2X yield amplification due to alpha heating
 - Appears LPI dominated asymmetry too large, capsule support -> mix in NIC, limits high foot

NIC

"Path Forward"

ICF Framework

Execute NIC NIC Pt design

Fell far short of ignition Asymmetry and mix suspected but details not understood

"Path Forward"

Emphasis on understanding what's wrong Lower convergence, more stable design

- 26kJ yield, no mix (high foot) 2X yield amplification due to alpha heating
 - Appears LPI dominated asymmetry too large, capsule support -> mix in NIC, limits high foot

ICF Framework

Can LPI, asymmetry and engineering features be mitigated?

Low LPI (low fill) hohlraum designs

At the start of 2015 the program redirected to "eliminate" LPI and improve symmetry – did it work?

At the start of 2015 the program redirected to "eliminate" LPI and improve symmetry – did it work?

Key results

Learned could achieve:

- Low LPI
- Low hot electrons
- Symmetric implosion

Implosions can be spherical if hohlraum is large enough

But, this capsule is not large enough to ignite

MacLaren et al

Implosions can be spherical if hohlraum is large enough

Spherical and stable DT implosions perform close to 1D even at CR~32

T_{ion} (keV)

dsr

100

μm

MacLaren et al

2.3

2.84±0.15

2.3±0.3

Beginning to apply these lessons to more ignition relevant designs -> improved efficiency

But not yet clear whether this approach can scale to ignition

Also new findings: Fill tube may be larger impact than originally expected

At the start of 2015 the program redirected to "eliminate" LPI and improve symmetry – did it work?

At the start of 2015 the program redirected to "eliminate" LPI and improve symmetry – did it work?

Key question to answer going forward: In the largest hohlraum afforded by NIF's power and energy, can we control symmetry with a capsule that is large enough to ignite? If not, can we do anything about it?

Going forward, goal is to determine how large a capsule can be imploded spherically on NIF

Low LPI, symmetric hohlraum driver

Will evaluate three capsule materials

– stress hohlraum and hydro stability differently

How will they perform, what are the remaining issues, can they be overcome?

Can we lengthen the "safe" operating window for symmetric drive – eg reduce wall motion?

Example: foam liner concept

Thomas et al

Beginning to explore new ideas to lengthen the "safe" operating window

Example: foam liner concept

Regular hohlraum

Foam lined hohlraum

Thomas et al

NIC

"Path Forward"

ICF Framework

Execute NIC NIC Pt design

Fell far short of ignition Asymmetry and mix suspected but details not understood

"Path Forward"

Emphasis on understanding what's wrong Lower convergence, more stable design

- 26kJ yield, no mix (high foot) 2X yield amplification due to alpha heating
 - Appears LPI dominated asymmetry too large, capsule support -> mix in NIC, limits high foot

ICF Framework

Can LPI, asymmetry and engineering features be mitigated?

Low LPI (low fill) hohlraum designs

Low LPI, symmetry demonstrated Not yet clear if scales to ignition Have plan to answer/improve

Summary of X-ray drive ignition on the NIF

- Progress in learning how to control drive symmetry
 - Identified as major factor limiting performance
- Beginning to apply lessons to understand how far this can scale towards ignition – need time to evaluate
- Beginning to explore concepts to improve prospects of scaling
- Ongoing engineering effort to address the capsule support and fill tube (not discussed today)

These new directions need a methodical, scientific approach, new diagnostics, improved models and time to evaluate

