PPPL International Collaborations

M.C. Zarnstorff

Deputy Director for Research

Fusion Power Associates
14 December 2016

Overview

- International Collaboration is pervasive at PPPL
 - E.g. on NSTX-U, Theory activities
 - As part of most research thrusts and strategies
- Preparation for ITER and future burning plasmas
 - Direct tasks and ITPA

- Access to broader range of facilities and capabilities
 - Especially superconducting / long-pulse / larger scale
 - Successful collaborations are win-win
 - Often includes team of US institutions.

Goal: Improve Understanding

- Challenge and validate theories and models
- Explore new ideas and opportunities

Examples:

- Extrapolation to ITER
- Liquid Plasma Facing Components and lithiuminteraction initiative
- Spherical torus
- Stellarators
- Next step studies & activities

Gyrokinetic understanding of ITER divertor heat-flux width

- Empirical data regression from present tokamak experiments shows
 - $\lambda_{q} \propto 1/B_{p}^{1.2}$ (λ_{q} = divertor heat-flux width mapped to outboard midplane)
 - Application of this scaling to ITER yields λ_q≈1mm, raising a severe issue for ITER operation
 - ITER is a large extrapolation from present-day tokamaks
 - A first-principles based prediction is needed

Study with XGC1 GK edge code

- Reproduces experimental results from present tokamaks
- Simulation of ITER: $\lambda_q = 5.6 \text{mm} \gg 1 \text{mm}$ due to turbulence in scrape-off layer
- JET, the largest existing tokamak, may show signs of trend toward ITER
- Need to understand changes in going to ITER scale. Verify in independent calcs.

ELM Suppression with RMP Extended to AUG, in Collaboration with DIII-D

AUG has W wall, some boron Z_{eff} =1.5, low impurity dilution DIII-D has C wall, Z_{eff} =4.5, $n_D/n_e \sim 1/3$

R. Nazikian W. Suttrop

D2 gas valve turned off

[Suttrop PPCF submitted]

KSTAR: n=1 RMP ELM stabilization Without Locking: Understanding Validated

New Remote Participation Center Used for KSTAR Experiments

Internet connectivity supports routine video-conferencing, data access, and data analysis with KSTAR & other facilities.

TRANSP Integrated Analysis & Simulation

- Supports tokamak studies worldwide using reduced models.
- Develop integrated analysis and modeling towards ITER needs.
- Development choices driven via international User Group. Also international development.
- TRANSP being integrated into IMAS, to enable use for ITER.
- TRANSP integrated into OMFIT for current experiments. Strong partnership with DIII-D OMFIT team

TRANSP Upgrades being Accelerated

		2015	2016		2017+
RF	•	EC: TORBEAM LH: GENRAY+CQL3D	• HHFW, ECRF: GENRAY+CQL3D	•	MPI GENRAY for multiple antenna Implement TORIC MPI over toroidal modes
NUBEAM	•	Feedback on fast ion diffusivity • (via neutrons) fast ion diffusion due to MHD 3D Halo neutrals multiple CX	NB deposition in SOL	•	GPU support Critical gradient model for interaction of fast ions with MHD
RF & Fast Ions	•	TORIC → NUBEAM (kick operator)	 TORIC ← NUBEAM (pass distribution function 	n)	Improve self-consistency of TORIC and NUBEAM
Isolver FB equilibrium and control	•	Shape Control •	 Toroidal rotation in equilibrium calc. 	•	MSE constraint MHD stability evaluation TRANSP as kernel in Plasma Control System Simulation Project (PCSSP)
PT-Solver	•	Flux based implicit solver	Impurity dens. predictionEPED1 via lookup table		Pellet ablation model PTSOLVER speedup NTV model for momentum transport
Framework				•	Modularization

Black: released to users Blue: beta-testing Red: under development

TRANSP Upgrades being Accelerated

		2015		2016		2017+
RF	•	EC: TORBEAM LH: GENRAY+CQL3D	•	HHFW, ECRF: GENRAY+CQL3D	•	MPI GENRAY for multiple antenna Implement TORIC MPI over toroidal modes
NUBEAM	•	Feedback on fast ion diffusivity (via neutrons) fast ion diffusion due to MHD 3D Halo neutrals multiple CX	•	NB deposition in SOL	•	GPU support Critical gradient model for interaction of fast ions with MHD
RF & Fast Ions	•	TORIC → NUBEAM (kick operator)	• (TORIC ← NUBEAM pass distribution function)	•	Improve self-consistency of TORIC and NUBEAM
Isolver FB equilibrium and control	•	Shape Control	•	Toroidal rotation in equilibrium calc.	: <	MSE constraint MHD stability evaluation TRANSP as kernel in Plasma Control System Simulation Project (PCSSP)
PT-Solver	•	Flux based implicit solver	•	Impurity dens. prediction EPED1 via lookup table	•	Pellet ablation model PTSOLVER speedup NTV model for momentum transport
Framework					•	Modularization

Black: released to users Blue: beta-testing Red: under development

New International Collaboration Centers

- Control of the Plasma-Material Interface for Long Pulse Optimization in EAST
 - Lead PI: Rajesh Maingi (PPPL)
- Control and Extension of High Performance Scenarios to Long Pulse
 - Lead PI: David Humphreys (GA), Co-PI: Raffi Nazikian (PPPL)
- Disruption Prediction and Avoidance in High Beta Long Pulse KSTAR Plasmas
 - Lead PI: Steven Sabbagh (Columbia U.), Co-PI: Steve Scott (PPPL)

Using these collaborations (and W7X) to develop remote collaboration/operation paradigms, preparing for ITER.

Multi-institutional US-ASIPP PMI collaboration initiated

Lithium delivery systems and science (PPPL, UI-UC, LANL)

- Flowing liquid lithium limiter as primary PFC
- Lithium granule injector ELM pace-making
- Lithium powder injector real time conditioning, ELM control
- Lithium granule dropper new; conditioning & ELM control?

Heat flux physics and divertor design (PPPL, UT-K, ORNL)

Erosion with mixed PFC materials (MIT, UT-K)

Core SXR upgrade for impurities (JHU)

Explore use of Lithium radiative cooling for access to detachment

PPPL serves to facilitate and coordinate activities

NSTX-U and MAST-U Collaboration on ST Understanding

- Scenario development in MAST-U and NSTX-U, MAST-U 1st plasma
- Advanced divertors: Snowflake and Super-X; liquid metals
- Advanced diagnostics
- Synthetic Aperture Microwave Imaging
- Measure magnetic field pitch angle via EBW emission: MAST, NSTX-U
- Doppler Back-scattering (MAST)
- CCFE: Neutronics calculations for Low-A HTS Pilot Plant
- Coordinate program goals via advisory committees

Measured angle matches EFIT

Neutron Flux (n/s/cm²)

1.00e+007 1.00e+009 1.00e+011 1.00e+013 1.00e+01

Bethany Colling Lancaster University Ph.D. thesis in Nuclear Engineering

QUEST (Japan) Collaboration Started

CHI-startup and ECH/EBW sustainment physics

QUEST Mission:

- Steady-state operation with ECH/EBW
- All metal hot wall and closed divertor

QUEST CHI Experiment tests high-Z electrode operation

QUEST is the largest ST in Japan

Strong Collaboration on W7X

US Team: PPPL, ORNL, LANL, Wisconsin, MIT, Auburn, Xantho Tech.

Enhancements for W7X Partnership

- Additional detectors for XICS: improve profile coverage
- Divertor test scraper element, installed before OP1.2b
- Improved equilibrium modeling, transport analysis

Re-joining LHD Collaboration for D-experiments

PPPL XICS provided kinetic profiles for W7-X

XICS provided time resolved profiles of:

Ion temperature (T_i)

Electron temperature (T_e)

Perpendicular rotation (u |)

Argon impurity density (n_{Ar})

Also: trim coils, magnetics analysis

Next Step Studies

Goal: study and develop options for future program elements

- Fusion nuclear science facility requirements and program plan, based on standard tokamak (C.Kessel et al).
- Participate in design studies for
 - CFETR
 - KDEMO

Summary

- International collaboration important in almost all fusion activities
 - Develop and validate understanding on full range of facilities
- Will become fundamental as we approach ITER exploitation
- Crucial to advance many topics and strategies
 - Long pulse sustainment (superconducting magnet facilities)
 - Scaling to larger size; divertor & PFC development
 - Stellarators