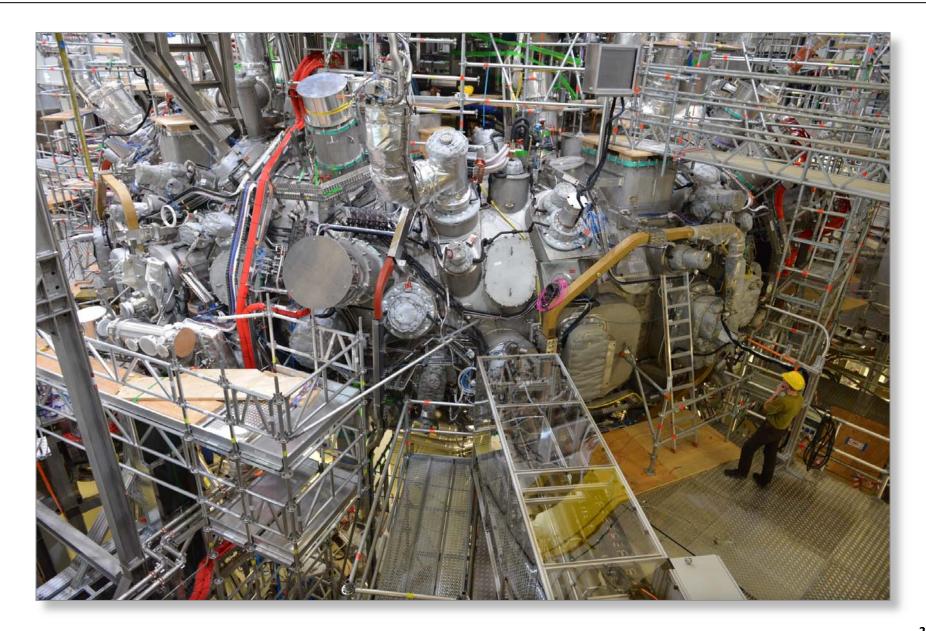

# **Fusion Power Associates 37th Annual Meeting**



# Status and Plans at Wendelstein 7-X

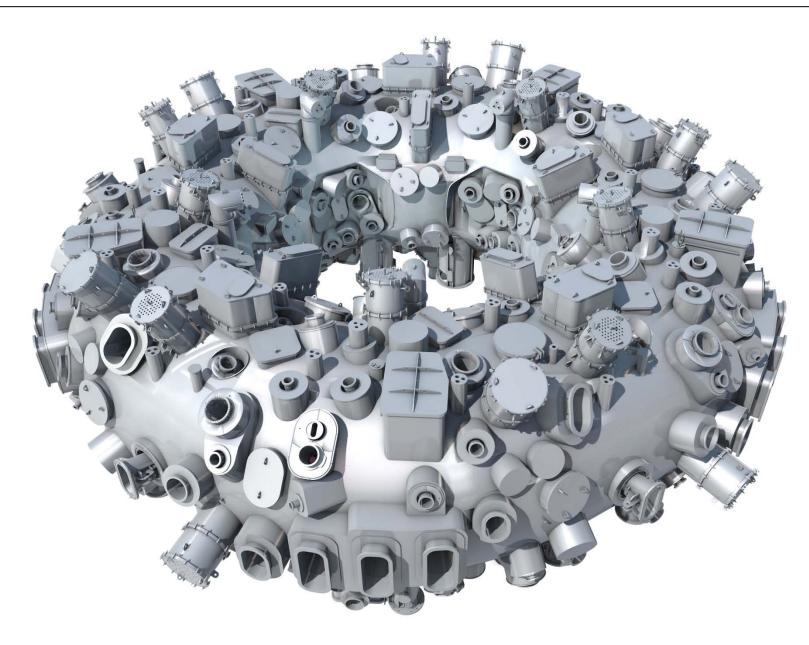
# Thomas Klinger Max Planck Institute for Plasma Physics Greifswald


on behalf of the Wendelstein 7-X team





# **The Wendelstein 7-X Stellarator**

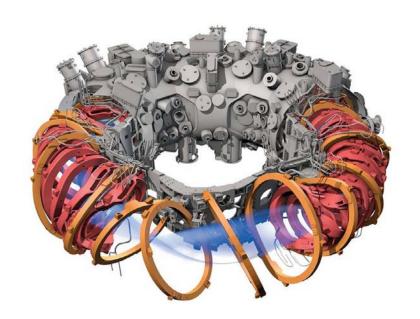


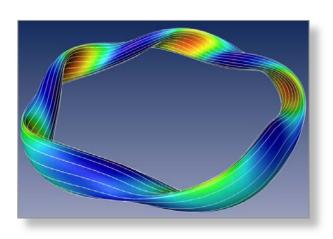





# The building blocks of Wendelstein 7-X





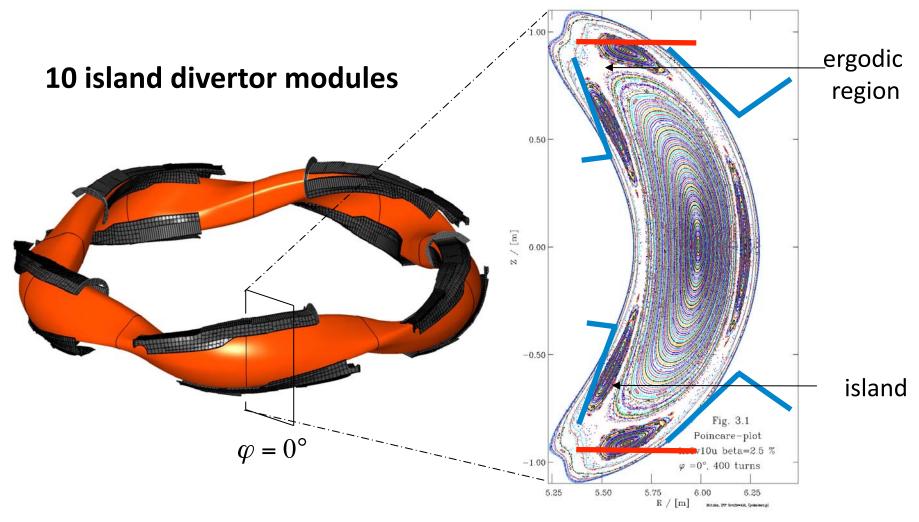




# **Wendelstein 7-X - facts and figures**



- 735 t mass with 435 t cold mass
- 70 superconducting NbTi coils
- 2.5 3 T magnetic induction on axis
- 30 m³ plasma volume
- 254 ports of 120 different types
- 265 m² plasma facing components
- 4.5 m height and 16 m diameter
- 1,060 Mio€ full cost
- 1.2 Mio h cumulated assembly time
- five magnetic field periods
- high iota, low shear  $\iota = 0.88 \dots 0.98$
- low bootstrap current O (10 kA)
- optimized plasma equilibrium
- steady-state ≤ 18 GJ injected energy



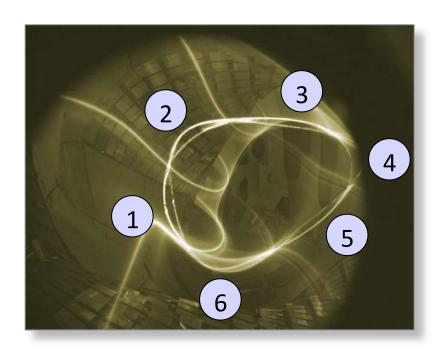


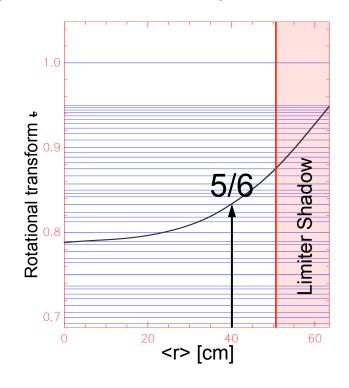



# The island divertor concept



The 10 island divertor modules are placed at invariant locations of equilibrium islands. They are used for controlled heat and particle flux as well as reclycling.




# **Measurement of the Magnetic Islands**



- $\iota/2\pi = 5/6$  configuration with 6 magnetic islands
- radial position, orientation and flip symmetry of the islands as expected





- confirms the correct magnet alignment (max. 1.5 mm deviation allowable)
- deliberately applied error field at  $\iota = 2\pi/2$  yields intrinsic deviation  $b_{21}/B_0 = 5 \cdot 10^{-6}$

Nature Communications 7 Article No. 13493 (2016)





# **Initial Setup of Wendelstein 7-X**



- 10 weeks of operation time, He and H plasmas
- 25 diagnostic systems to be put into operation
- 6 gyrotrons  $P_{ECRH} = 5 \text{ MW}$
- no NBI heating
- no ICR heating
- first wall steel panels/heat sinks but no graphite
- 5 uncooled poloidal graphite limiters (no island divertor)
- pulse limit fixed to  $E^{\text{max}} = 2 \text{ MJ later } E^{\text{max}} = 4 \text{ MJ}$

#### expected values

$$T_e^{NC} = 4 \text{ keV}$$

$$T_i^{NC} = 1 \text{ keV}$$

$$n_{e0} = 2 \cdot 10^{19} \text{ m}^{-3}$$

$$\beta_0^{NC} \approx 1 \%$$

#### major goals

- commissioning of device control, ECRH, diagnostics
- plasma startup in He and H
- plasma heating
- density control
- impurity monitoring, limiter heat loads, edge plasma



# **First Hydrogen Plasmas**





# International research team



France

Hungary

Italy

**Poland** 

Portugal

Spain



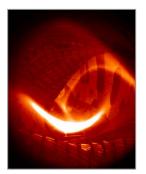
Los Alamos National Lab

MIT

**PPPL** 

U Wisconsin/Auburn U




# **Overview of the First Operation Phase**



The 10 weeks of the first operation phase has exceeded all our expectations. In the end 30 diagnostic systems were commissioned and delivered data.



$$T_e = 1 \text{ keV}$$
  
 $T_i < 1 \text{ keV}$   
 $n_{e0} \sim 2 \cdot 10^{19} \text{ m}^{-3}$   
 $t_d = 50 \text{ ms}$ 



$$T_e = 7 \text{ keV}$$
  
 $T_i = 1.2 \text{ keV}$   
 $n_{e0} = 3 \cdot 10^{19} \text{ m}^{-3}$   
 $t_d = 250 \text{ ms}$ 

$$T_e = 7 \text{ keV}$$
  $T_e = 8 \text{ keV}$   
 $T_i = 1.2 \text{ keV}$   $T_i = 1 \text{ keV}$   
 $n_{e0} = 3 \cdot 10^{19} \text{ m}^{-3}$   $n_{e0} = 2 \cdot 10^{19} \text{ m}^{-3}$   
 $t_d = 250 \text{ ms}$   $t_d = 6 \text{ s}$ 

| 10.12.2015 |        |      |
|------------|--------|------|
| 1st H      | le Pla | asma |

2 MJ

3.2.2016 1st H Plasma

4 MJ

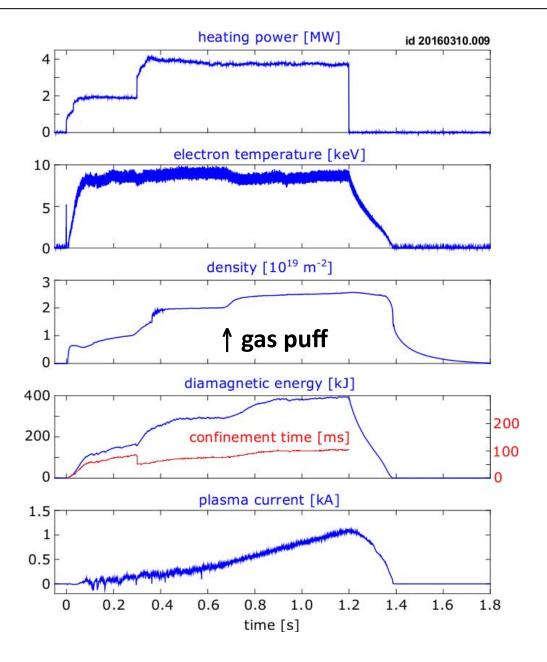
$$T_e = 8 \text{ keV}$$

$$T_i = 2 \text{ keV}$$

$$n_{e0} = 3 \cdot 10^{19} \text{ m}^{-3}$$

$$t_d = 500 \text{ ms}$$

$$T_e = 10 \text{ keV}, 7 \text{ keV}$$
  
 $T_i = 1 \text{ keV}, 2.1 \text{ keV}$   
 $n_{e0} = 5 \cdot 10^{19} \text{ m}^{-3}$   
 $t_d = 1 \text{ s}$ 


~ 1000 experiments

On the 10th of March 2016 the operation was suspended as planned.



# A High-Power Hydrogen Discharge





#### magnetic diagnostics

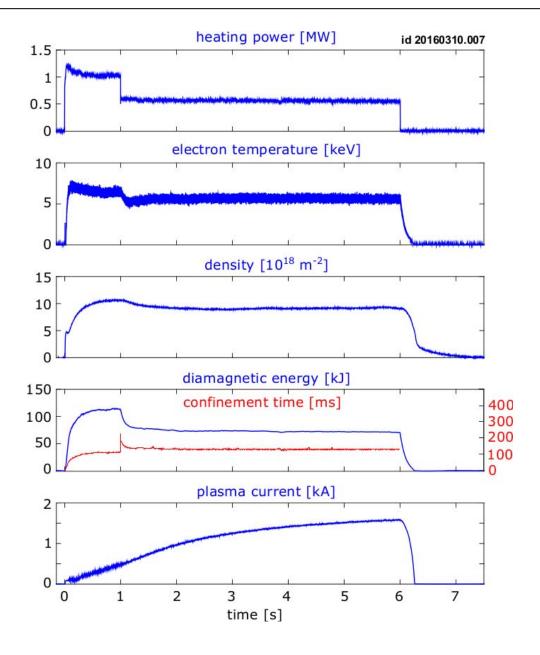




 $\sim$  30% radiation loss  $\tau_{\rm E} \sim 150~{\rm ms} \sim {\rm ISSO4~scaling}$   $<\!\!\beta\!\!> = 0.2\%$ 

#### diamagnetic energy

$$E_{\rm dia} \le 400 \; \rm kJ$$


#### toroidal current

$$I_{\rm RS} \le 1000\,{\rm A}$$



# A Long-pulse Hydrogen Discharge





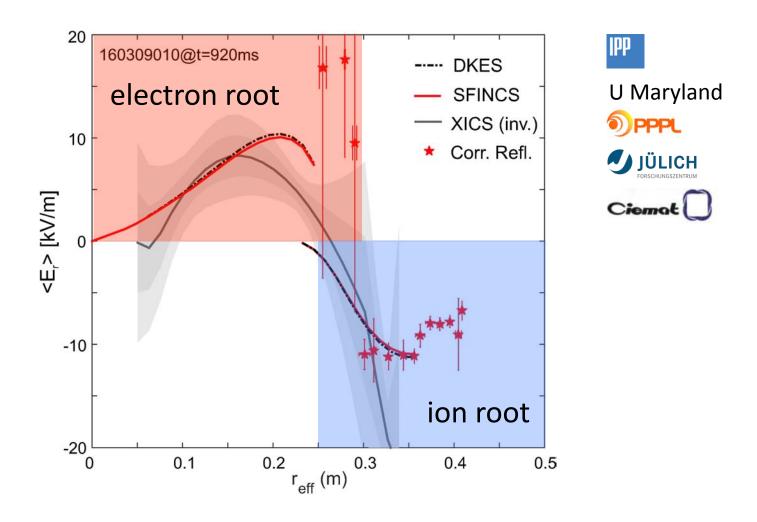
#### wall conditioning

- 10 glow discharge electrodes
- ECR wall conditioning
- decisive for density control

#### diamagnetic energy

$$E_{\rm dia} \le 100 \; \rm kJ$$

#### toroidal current

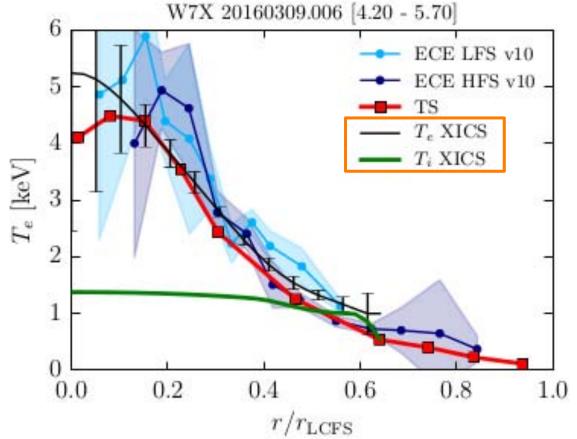

$$I_{\rm BS} \le 1800 \,\mathrm{A} \,\,\,\text{(still rising)}$$



### **The Radial Electric Field**



The radial electric field is decisive for necolassical transport and is measured by means of poloidal correlation reflectometry.






# **Peaked Temperature Profiles**



peaked electron temperature profile with  $T_{\rm e} > T_{\rm i}$ 

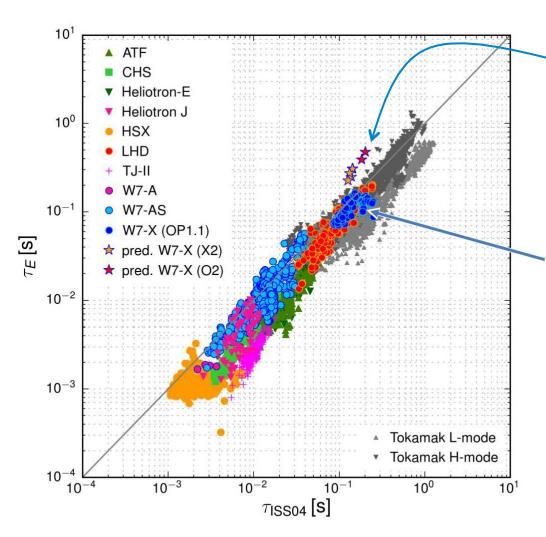


ion temperature profile fairly flat

**ECE** 

TS

XICS OPPPL


in good agreement

positive electric field for  $r/r_{\rm LFCS}$  < 0.6 central electron root confinement (CERC)



# **Energy Confinement Time**





$$\tau_E^{\rm ISS04} = 0.134 a^{2.28} R^{0.64} P^{-0.61} \bar{n}_e^{0.54} B^{0.84} t_{2/3}^{0.41}$$

#### simulation points

for the ion-root regime

$$\left[\frac{\tau_{\rm E}}{\tau_{\rm E,ISS04}}\right]^{\rm W7-X} > \left[\frac{\tau_{\rm E}}{\tau_{\rm E,ISS04}}\right]^{\rm W7-AS}$$

#### measurement points

$$\tau_{\rm E} \le 150 \; {\rm ms} \sim {\rm ISS04} \; {\rm scaling}$$

- best values CERC plasma  $\propto \sqrt{v}$
- 1/3 volume CERC conditions
- 3/4 volume ISS04 conditions
- lower values at low  $P_h$
- wall properties CuCrZr
- wall conditioning imperfect



# Science Program – the Big Picture



#### Major milestones to reach are ...

- constructability of a superconducting optimized stellarator
- Tokamak-like confinement in integrated Imfp discharge scenarios
- high plasma density  $> 2 \cdot 10^{20} \, \mathrm{m}^{-3}$  microwave (140 GHz) heating scenarios
- full scale divertor performance with neutral and impurity control
- favourable stability and fast particle confinement at  $\langle \beta \rangle \ge 4\%$
- very long pulse 1800 s discharges at 10 MW heating power

#### The key elements are ...



optimized magnetic field

water-cooled island divertor



## **Extension in Various Areas**

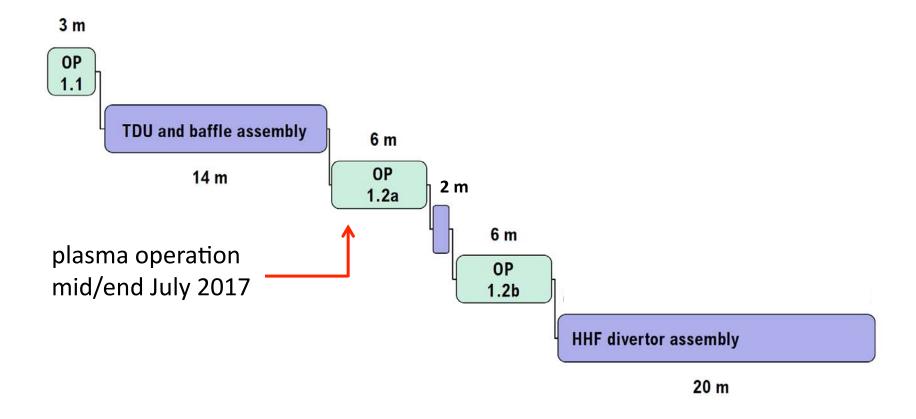




island divertor graphite wall



> 20 additional diagnostic systems


9 MW ECRH2 MW ICRH3.5 + 3.5 MW NBI (H+)



# **The Coming Years**



During the coming years we have a sequence of completion and operation phases.



Staged approach to full performance long-pulse operation starting in mid 2020.



# The Three Stages



OP 1.1 12/2015 - 3/2016 10 weeks

OP 1.1 uncooled 12/2015 - 3/2016 graphite limiters 10 weeks no wall coverage He and H operation 
$$E_{\rm max} = 2~{
m MJ} 
ightarrow 4~{
m MJ}$$

$$P_{\text{ECRH}} = 4.3 \text{ MW}$$
  $T_{\text{e}} = 8 \text{ keV}$   $T_{\text{i}} = 2.5 \text{ keV}$   $n = 4.5 \cdot 10^{19} \text{ m}^{-3}$   $\beta_0 > 2.5 \%$ 

uncooled graphite divertor graphite wall 
$$E_{\rm max} = 80~{
m MJ}$$

$$P_{\text{ECRH}} = 8 \text{ MW}$$
  
 $P_{\text{ICRH}} = 1.6 \text{ MW}$   
 $P_{\text{NBI}}^{\text{H}} = 7 \text{ MW}$ 

$$T_{\rm e}^{\rm NC} = 5 \text{ keV}$$
  
 $T_{\rm i}^{\rm NC} = 4 \text{ keV}$   
 $n^{NC} = 1.6 \cdot 10^{20} \text{ m}^{-3}$ 

water-cooled CFC divertor graphite wall 
$$E_{\rm max} = 18~{\rm GJ}$$

$$P_{\text{ECRH}} = 10 \text{ MW}$$
  
 $P_{\text{ICRH}} = 4 \text{ MW}$   
 $P_{\text{NBI}}^{D} = 10 \text{ MW}$ 

$$T_e^{\text{NC}} = 5 \text{ keV}$$
  
 $T_i^{\text{NC}} = 5 \text{ keV}$   
 $n^{\text{NC}} = 2 \cdot 10^{20} \text{ m}^{-3}$   
 $\langle \beta \rangle = 5 \%$ 



# **Numerous Diagnostic Systems**



- coherence imaging system
- visible divertor spectroscopy
- divertor bolometer
- divertor infrared cameras
- laser induced fluorescence
- divertor Langmuir probes
- divertor PWI targets
- PWI Si wavers
- alkali metal beam
- $\blacksquare$  H<sub> $\alpha$ </sub> cameras
- X-ray tomographic cameras
- video camera system
- Thomson system
- ECE system
- Doppler reflectometer
- neutron counter
- magnetic diagnostics
- bolometer systems

- pellet injector + mass det.
- probes for manipulator
- phase contrast imaging
- laser blow-off system
- impurity pellets
- C-O monitor
- Z<sub>eff</sub> profile diagnostic
- CXRS and BES at NBI
- collective Thomson scattering
- profile reflectometer
- imaging bolometer
- interferometer
- helium beam
- flux surface measurement
- impurity spectrometer
- pulse height analysis
- X-ray imaging camera systems







improved















# **Current In-vessel Situation** (yesterday)







# **Summary**



- Wendelstein 7-X is a physics-optimized SC stellarator
- completed after 15 years of construction (1,060 Mio€ total cost)
- after one year commissioning the machine works perfectly fine
- first 10 weeks of plasma operation suprisingly successful
- now installation of 10 island divertor modules and graphite wall
- allows for increased plasma performance and longer discharges

#### What did we learn already?

- better plasma parameters and performance than expected
- $T_{\rm e} > 8 \; {\rm keV} \; {\rm and} \; T_{\rm i} > 2 \; {\rm keV} \; {\rm at} \; n > 4 \cdot 10^{19} {\rm m}^{-3} \; {\rm yields} \; \beta_0 \sim 2.5\%$
- 4 MJ microwave energy fully absorbed
- core electron root confinement established
- even more science: crashes, filaments, impurity transport, ...