Progress and Next Steps at TAE

Michl Binderbauer | CEO | TAE Technologies

41st FPA ANNUAL MEETING | DECEMBER 16, 2020

Historical and future program overview

Continual progress towards advanced beam-driven FRC fusion

Major development platforms integrate then best design

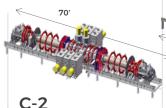
incremental bases for rapid innovation

Copernicus entering phased sequence of reactor performance experiments

TAE's current machine

- First plasma July 2017
- One year construction
- On time, on budget
- Scaling studies ongoing

TAE's next machine


- In final design
- Construction to start 2021
- First operation in early 2023

100+

A, B, C-1
Early development
1998 - 2000s

First full-scale machine 2009-2012

C-2U Plasma Sustainment 2013-2015

Norman (C-2W)

100'

Collisionless Confinement Scaling

2016-2020

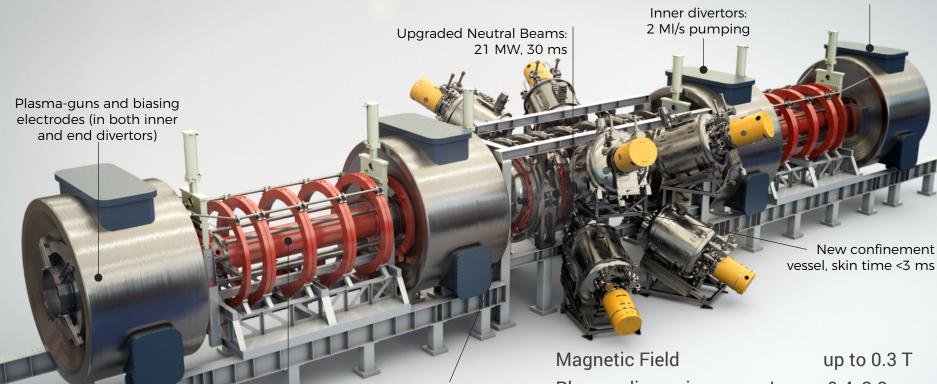
Copernicus

Reactor Performance operating on hydrogen plasma

2021+

Norman Program Update

Norman Goals


Explore beam driven FRCs in fully collisionless regime

- Principal physics focus on
 - scrape off layer and divertor behavior
 - ramp-up characteristics
 - transport regimes
- Specific programmatic goals
 - demonstrate ramp-up and sustainment for times well in excess of characteristic confinement and wall times
 - explore energy confinement scaling over broad range of parameters
 - core and edge confinement scaling and coupling
 - consolidated picture between theory, simulation and experiment
 - develop and demonstrate first order active plasma control

NORMAN (C-2W) — TAE's 5th generation

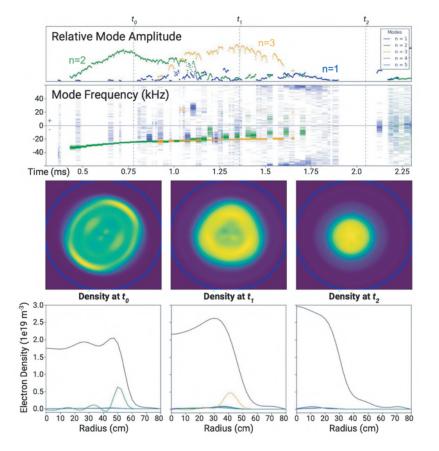
End divertor

New magnet system for field ramp & active control

Upgraded formation sections: ~15 mWb trapped flux

Plasma dimensions $- r_s$, L_s

Density – n_e

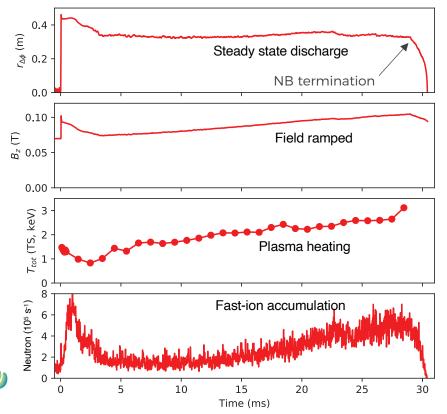

Temperature – T_{tot}

0.4, 2-3 m

1-3×10¹⁹ m⁻³

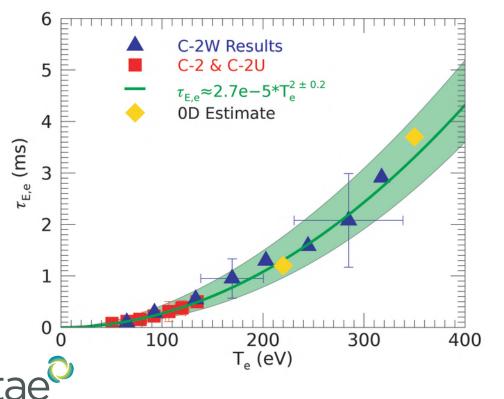
up to 3 keV

Google collaboration on diagnostics post processing Allows study of internal plasma perturbations



- High fidelity holistic 3-D plasma reconstruction
- Plasma perturbations up to toroidal mode number 5
- Mode amplitude < 3 G
 - experimentally benign
 - consistent with theory
- Global modes suppressed and not distractive

Typical steady-state FRC discharges


Sustainment with active feedback of beam-driven FRCs

- Duration up to 30 ms (limited by energy storage)
- Plasma heating and ramp-up clearly observed
- Neutron signal indicates fastion accumulation (up to and exceeding thermal pressure)
- Active external field and shape control as plasma pressure builds up

TAE electron confinement scaling confirmed

New C-2W regime shows same trend up to $3x T_e$ of C-2U

- Electron energy confinement time correlates positively with $T_{\rm e}$
- Transport rates inferred from model using experimental inputs and constraints
- Multiple methodologies agree
- Variance due to model uncertainties, not variation of mean values
- Further analysis under way

Next Steps

Copernicus

Reactor scale plasma performance platform

Design development ongoing

- 10+ keV ion temperature goal
- Hydrogen only operation

Budget and timing

- \$250 MM cap-ex
- Construction to begin in 2021
- Commissioning and ops by 2023

Beyond Fusion Spin-off technologies

