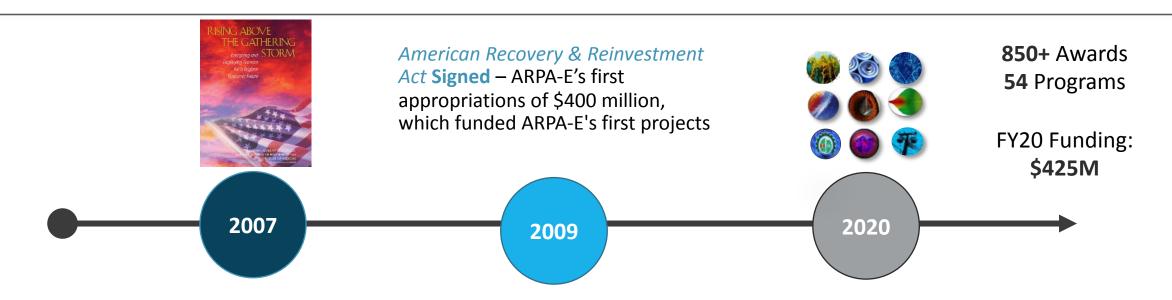


Scott Hsu, Program Director scott.hsu at hq.doe.gov

Fusion Power Associates 41st Annual Meeting (virtual) December 16–17, 2020



Outline

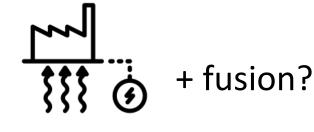
- Introduction
- Fusion portfolio and 2020 highlights
- Plans/opportunities

ARPA-E's history and mission

Goal 1: Overcome long-term and high-risk technological barriers in the development of energy technologies that...

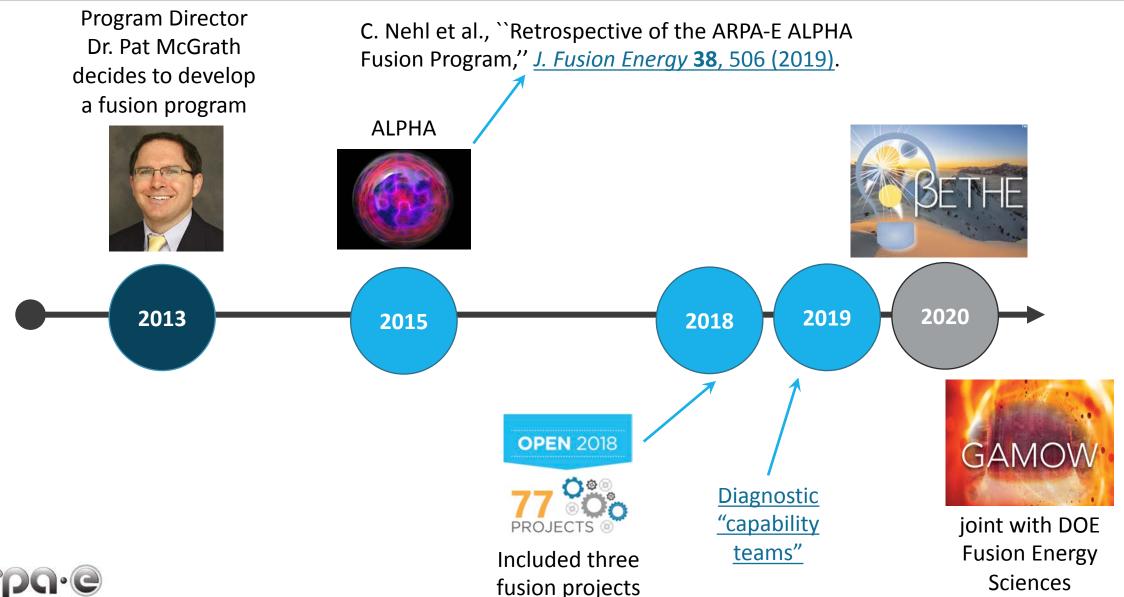
Goal 2: Ensure that the U.S. maintains a technological lead in developing and deploying advanced energy technologies.

Framing of fusion energy within ARPA-E's program portfolio


- Fusion energy sits at arguably the highest-risk, highest-impact end of ARPA-E's entire energy-technology portfolio
 - Fusion has the potential to be a high-power-density, firm, low-carbon energy source that can possibly be sited near dense population centers
 - Fusion can potentially disrupt the way humans generate and use energy
- ► Fusion is valuable risk mitigation for the world to achieve cost-effective "net-zero" GHG emissions while meeting growing energy demand and electrification
 - There are a limited number of low-carbon, primary-energy solutions, all with significant technical and/or socio-economic challenges:

nuclear fission

duration storage



Fossil fuels with carbon capture, utilization, sequestration (CCUS)

Enhanced geothermal

ARPA-E fusion timeline/programs

Thought process behind new ARPA-E fusion programs

Aspiration: catalyze a new trajectory toward commercially viable DEMO on a two-decade time scale.

Technical drivers

More low-cost approaches at higher levels of fusion performance

+ diagnostic teams

Innovative solutions from the first wall to the heat exchanger

joint with FES

Programmatic drivers

Engage larger portion of the fusion R&D community

Leverage SotA expertise/capabilities

Incentivize publicly and privately funded teams to work together

BETHE* program: Catalyze R&D to deliver a larger number of lower-cost fusion concepts at higher performance levels

- Projected net-gain experiment for ≤ \$100M
- Specify entry/exit milestones
- Funding ceiling commensurate w/ achieved performance
- Leverage capability teams
- Selected projects include mirrors, spheromak, MIF, Z pinch, μ-catalyzed fusion

Advance the performance of lower-cost concepts

Concept development

Capability teams

Lower the cost of moremature concepts

Component technology development

- Potentially enable overnight capital cost<\$2B, <\$5/W
- Selected projects include fast-ramping tokamak HTS central solenoid, new approaches to stellarator magnets, next-gen highbandwidth lasers

BETHE portfolio (\$35M + \$5M FES): 17 projects across 3 technical categories

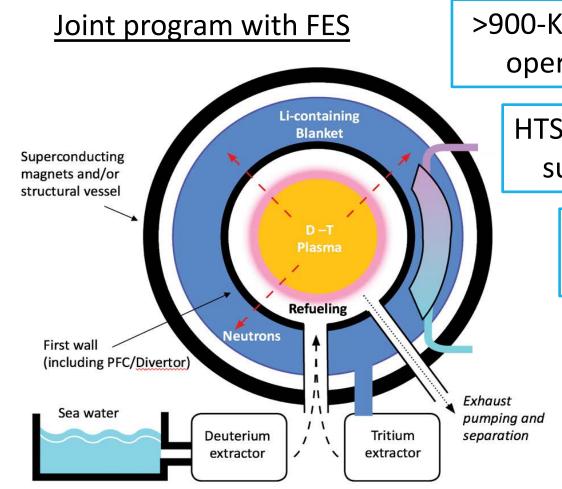
Category A:
Concept development

Category B: Component technology development

Jointly funded with FES

SapientAI, LLC

Prime recipients: 7 universities, 5 private companies, 5 national labs; click here for full list of project teams.


GAMOW* program: Accelerate R&D in fusion enabling technologies to support commercially viable fusion concepts

Deployable in experiments well within a decade

Device simplification or elimination of entire subsystems

Significant cost reduction

Improvements in RAMI, safety, sustainability

>900-K blanket operation

HTS tape <\$10/kA-m, substrate >3 GPa

<1000-Ci (100-mg)
T annual release

>10-MW/m² continuous power handling at 1st wall

GAMOW

<0.75-kG T inventory for 500-MW_{th} system

*Galvanizing Advances in Market-aligned fusion for an Overabundance of Watts; click here for program overview.

GAMOW portfolio (\$29M): 14 projects across 7 technical categories

Integrated First-Wall and Blanket Technology

 Fusion Energy Reactor Models Integrator (FERMI), Oak Ridge National Laboratory

Plasma-Facing Components (PFC) and Divertor

 Renewable low-Z wall for fusion reactors with built-in tritium recovery, University of California: San Diego

Tritium Fuel Cycle

- Interfacial-Engineered Membranes for Efficient Tritium Extraction, Colorado School of Mines
- Direct LiT Electrolysis Process Modeling & Scale up, Savannah River National Laboratory
- EM-Enhanced HyPOR Loop for Fast Fusion Fuel Cycles, Savannah River National Laboratory

Joint program with FES

Superconducting Magnets

 Advanced HTS Conductors Customized for Fusion, University of Houston

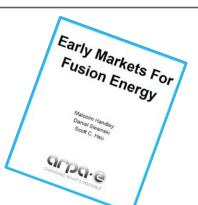
High-efficiency electrical-driver systems

- Wide Band Gap Semiconductor Amplifiers for Plasma Heating and Control, Princeton Fusion Systems
- AMPERE Advanced Materials for Plasma-Exposed Robust Electrodes, University of California: Los Angeles
- High Efficiency, Megawatt Class Gyrotrons for Instability Control of Burning Plasma Machines, Bridge 12 Technologies

Novel Fusion Materials

- Advance Castable Nanostructured Alloys for First-Wall/Blanket Applications, Oak Ridge National Laboratory
- Ultra High Flux DT Neutron Source for Accelerated Testing of Fusion Materials and Subsystems to Reactor-relevant DPA Levels, Phoenix LLC
- ENHANCED Shield: A Critical Materials
 Technology Enabling Compact Superconducting
 Tokamaks, Stony Brook University

Advanced and Additive Manufacturing


- Plasma Facing Component Innovations by Advanced Manufacturing and Design, Oak Ridge National Laboratory
- Microstructure Optimization and Novel Processing Development of ODS Steels for Fusion Environments (MONDO-FE), Pacific Northwest National Laboratory

Prime recipients: 5 universities, 3 private companies, 6 national labs; click <u>here</u> for full list of project teams.

Tech-to-Market (T2M) priorities for the ARPA-E fusion portfolio

Investor engagement

Market studies

- Engaging NGOs (who will be the advocates for the ultimate commercial adoption of fusion)
- Supporting/coaching our project teams (on development plan, team building, securing follow-on funding, etc.)

Summary of findings from ARPA-E report *Early Markets for Fusion Energy*

- ► Most-promising early markets are high-priced electricity markets around the world (up to \$110/MWh, e.g., Singapore, Japan, California)
 - Eventually, fusion may need to cost <\$50/MWh to access very large markets (to compete with natural gas w/CCS and \$50/ton carbon tax)
- Load-following may not be economically feasible for fusion (it cannot afford to sit idle half the time due to large capital cost)
 - Integrated thermal storage may be needed so plant can run at high capacity factor
- Process-heat and hydrogen-production markets will be tough early markets (also, fusion may not be able to achieve the needed high temperatures)
- Desalination & direct air capture alongside power generation or retrofitting coal power plants may help make fusion more economically competitive

Upcoming opportunities

- <u>Teaming partner announcement</u> posted for potential <u>OPEN 2021</u> FOA (agency-wide)
 - Fusion energy
 - Energy/electrification applications of low-temperature plasmas (LTP)
 - Nuclear waste disposition
- Recruit my "successor" to start hopefully no later than mid-2022

Please contact me to discuss any of the above: scott.hsu at hq.doe.gov.

Check https://arpa-e-foa.energy.gov regularly for new FOAs.

Sign up for ARPA-E <u>newsletter</u> to receive updates.

Join the Team that is Transforming the Energy of Tomorrow

PROGRAM DIRECTOR

- Program development
- Active project management
- Thought leadership
- Explore new technical areas

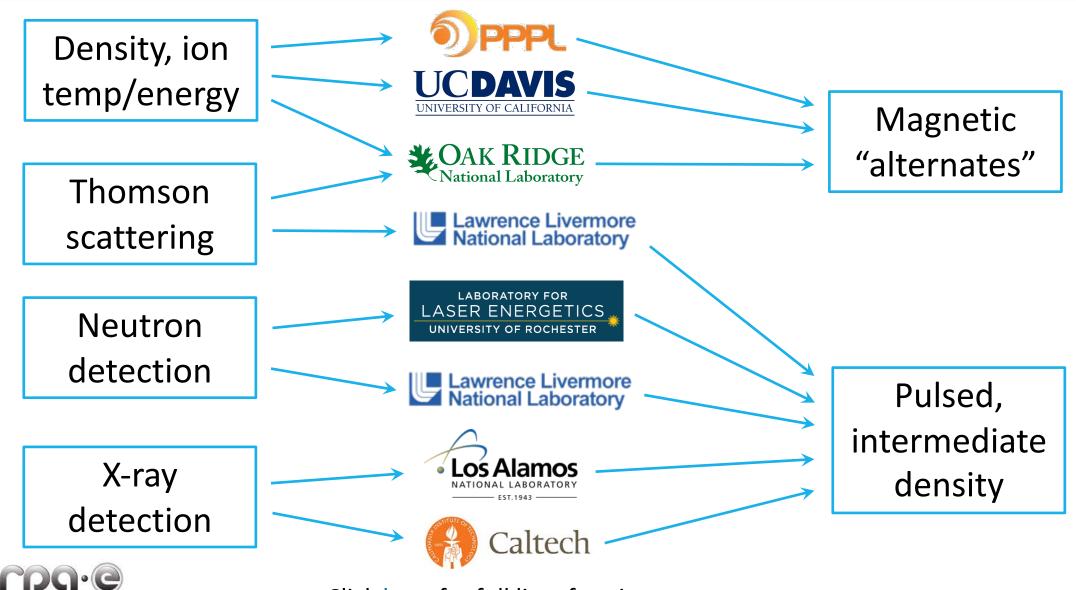
TECHNOLOGY-TO-MARKET ADVISOR

- Business development
- Technical marketing
- Techno-economic analyses
- Stakeholder outreach

FELLOW

- Independent energy technology development
- Program Director support
- Organizational support

Learn more and apply: www.arpa-e.energy.gov/jobs or arpa-e-jobs@hq.doe.gov.



https://arpa-e.energy.gov

Diagnostic capability teams: "Transportable" diagnostics & expert diagnosticians to support ARPA-E fusion concept teams (\$7.4M)

BETHE capability teams

Lead Institution	Primary Model/Codes or Diagnostic	Teams supported
	High-fidelity moment-kinetic models, Gkeyll	Wisconsin, LANL, UMBC, General Fusion
SapientAI, LLC	Data analytics, machine learning, AI	CTFusion, LANL, General Fusion
LABORATORY FOR LASER ENERGETICS UNIVERSITY OF ROCHESTER	Rad-MHD (FLASH), hybrid/kinetic (TriForce), kinetic PIC (OSIRIS)	MIFTI, PFS/PPPL, LANL, Compact Fusion Systems
Massachusetts Institute of Technology	RF modeling	Wisconsin, PFS/PPPL, UMBC
Los Alamos NATIONAL LABORATORY EST. 1943	Solid-state X-ray imager; multi-chord spectroscopy	tbd
OAK RIDGE National Laboratory	Doppler-free saturation spectroscopy (<i>B</i> and <i>E</i>)	PFS, TAE (via INFUSE)

