

FUSION POWER ASSOCIATES 41ST ANNUAL MEETING **Fusion Energy: Achievements and Opportunities 2020**December 16-17, 2020

Plasma Fusion Energy — An Ideal Achievable Power

In a plasma with over tens of millions of degrees in temperature, ions of two lighter nuclei can fuse into a heavier nucleus and release energy.

D+T \Rightarrow He + n + 17.6 MeV

D+D \Rightarrow He + n + 3.3 MeV

 $p+^{11}B \Rightarrow 3*He + 8.7 MeV$

Plasma fusion temperature ~ 0.2B °C

~ 1B °C

~ 2B °C

Abundant Fuel

Low Fuel Consumption

City of a million residence

60KG

Friendly to **Environment**

Higher Safety and Reliability

Relative carbon release Coal Oil Gas Fusion

Advantages over fission

Magnetic Confinement Fusion Milestones and Plans — Increasing Contributions from Spherical Tokamaks (ST)

and US. D-T burning plasma experiment is expected to commence in 2035.

ENN Fusion R&D Mission — Compact Clean Commercial Power

EXL p-11B Fusion Plasma Physics Theoretical Model & R&D Goals

Distinguishing features & R&D goals:

- Multi-fluid spinning plasma equilibrium (axisymmetric distributed macroscopic force-balance)
- Orbit-confined energetic electrons raise current-drive efficiency
- LCFS protected from edge recycling, improving plasma confinement
- Ion velocity differential eases Lawson Criterion triple product Tnτ

Experiment and Analysis will Update Model and Continue ST Reinvention.

EXL-50 Proof-of-Principle Experiment

Observed High Amp/(ECRH Source Watt) at Low Power & Density

Observed Copious Confined Energetic Electrons, Carrying Large Fraction of Toroidal Current (2020.4)

Plasma current, energetic electrons (Bremsstrahlung HXR intensity) and energy content (HXR energy spectrum) are observed to increase conjointly

Multi-Fluid Equilibrium Theory vs. Experiment — Large Toroidal Current Can Exist in Wide, Open Field-Line Region

A 3-fluid equilibrium near-reproduction of an EXL-50 Plasma #4851@3s

- Three-fluid equilibrium is shown to exist in EXL-50 by computing equilibrium that nearly reproduces available measurements
- Energetic electrons are observed to exist also in open-field-line region, carry most toroidal current, and form a Last Closed Flux Surface (LCFS)

Three-Fluid Axisymmetric Equilibrium Model and Application to Spherical Torus Plasmas Sustained by RF Electron Heating, https://doi.org/10.1585/pfr.10.1403084.

Introduced Theory That a Velocity Differential V_d Between Proton and Boron Ions Can Reduce the Lawson Criterion for Fusion Burn

■ $V_d = 2C_s$ would reduce the triple product for p-11B burn to ~7x10²² m-3 s keV*

$$\langle \sigma v \rangle = \frac{1}{V_d} \left(\frac{\beta}{\pi} \right)^{1/2} \int_0^\infty \sigma(v) v^2 \left\{ \exp(-\beta (v - V_d)^2 - e \exp(-\beta (v + V_d)^2)) \right\} dv \qquad v = \left| v_p - v_B \right|, \quad \beta = \frac{M_{pB}}{2T}$$

■ Raise p-¹¹B fusion plasma reaction rate to ~7x10⁻²² m³/s (T_i >100keV)

^{*}Toroidal plasma conditions where the p-¹¹B fusion Lawson criterion could be eased, DOI: <u>10.21203/rs.3.rs-93644/v1</u>.

*Four-Fluid Axisymmetric Plasma Equilibrium Model Including Relativistic Electrons and Computational Method and Results, http://arxiv.org/abs/2010.08116.

EXL p-11B Fusion R&D Goals on Plasma Energy Confinement Are Orders-of-Magnitude Above Known Scaling Law Estimates

Scale-Up Design Parameters

Confinement Time Challenges

EXL p- 11 B Fusion Triple-Product R&D Goals — Challenge of an Aneutronic Fusion, and Potential Leverages in V_d and HTSC

Low-Field (B_t =1T) EXL-75 Concept, ECRH Resonance near 2T

Technical goal:

- A next step in raising plasma parameters, Ip up to 1.6MA;
- p-B plasma confinement, H&CD efficiencies, V_d at 10-keV;
- Comparative tests of limiter and divertor effectiveness.

Vacuum Vessel & Coils

5370

Internal Arrangement,
Divertor Option

EXL-75 Parameters

Plasma Current, I _p , MA	1.6
Plasma R, m	0.76
Energetic Electron R _e , m	1.05
Elongation, k	≈1.8
Aspect Ratio, A	1.5-1.6
Toroidal Field at R, B _t , T	1.0
ECRH Power, P _{ECRH} , MW	5
LHCD Power, P _{LHCD} , MW	2
ICRH Power, P _{ICRH} , MW	5
NBI Power, P _{NBI} , MW	10
Discharge Time, $t_{\rm d}$, s	5

ENN Fusion Technology R&D Center (2020)

Size	Academic Training		Characteristics
Almost 100 in number	Hebei Key Laboratory of Compact Fusion	Ph.D. degrees 40%	Average Age: 37 With Passion, Courage

Cooperation, Contribution, Moving Fusion Energy R&D Forward

- Promote an efficient and agile p-B fusion R&D effort, be a member of fusion community
- Learning by doing, drawing from expertise in fusion, high-energy particles, laser, materials
- **■** Engage experts from schools, laboratories, industries, power companies, private enterprises

"Develop Fusion Energy, Benefit Mankind for Generations!"

Contact:

Dr. Hongmei Zhang, Director, Portfolio Strategy and Technology Development, ENN Group hongmeizhang2002@gmail.com, +1 781 266 8485

Wanqing Liu, Human Resource Department liuwanqing@enn.cn, +86 159 3061 0429