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2 I MagLIF is a Magneto-Inertial Fusion (MIF) concept

Relies on three components to produce fusion conditions at stagnation
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Magnetization: 10-30T at t=0
* Reduces electron heat
loss during implosion
* Traps charged particles
at stagnation
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S.A. Slutz et al., Phys. Plasmas (2010); A.B. Sefkow et al., Phys. Plasmas (2014); S.A. Slutz et al., Phys. Plasmas (2018).
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MagLIF is a Magneto-Inertial Fusion (MIF) concept

Relies on three components to produce fusion conditions at stagnation

* Laser preheat: 100-200 eV
e Uses Z-Beamlet Laser

* Relax convergence requirement
* CR=Riyitial/ Riina= 120 = 20-40
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* Enable slow implosion + Increase adiabat to limit |
with thick target walls required convergence % N 35
time (s <10~

S.A. Slutz et al., Phys. Plasmas (2010); A.B. Sefkow et al., Phys. Plasmas (2014); S.A. Slutz et al., Phys. Plasmas (2018).
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Magnetically Driven Implosion

* Relatively low implosion
velocity ~100 km/s

* B-field amplified to >few kT

Wagnetization Preheat Implosion
» Suppress radial thermal < lonize fuel to lock in B- « PdV work to heat fuel

conduction losses field « Flux compression to
* Enable slow implosion < Increase adiabat to limit  amplify B-field
with thick target walls required convergence

S.A. Slutz et al., Phys. Plasmas (2010); A.B. Sefkow et al., Phys. Plasmas (2014); S.A. Slutz et al., Phys. Plasmas (2018).
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Relies on three components to produce fusion conditions at stagnation
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netization Preheat Implosion
uppress radial thermal + lonize fueltolockin B- -« PdV work to heat fuel
conduction losses field « Flux compression to
* Enable slow implosion < Increase adiabat to limit  amplify B-field
with thick target walls required convergence

S.A. Slutz et al., Phys. Plasmas (2010); A.B. Sefkow et al., Phys. Plasmas (2014); S.A. Slutz et al., Phys. Plasmas (2018).

Stagnation

Several keV
temperature,
~1 g/cm3 fuel
density

Several kT B-field
traps charged fusion
products



We have been using the multi-MJ] Z pulsed power facility and the adjacent multi-k|
Z-Beamlet laser to perform integrated tests of the MagLIF concept since 2015

Z Pulsed Power FaC|I|ty

TTarm =4 I ]le ]

|| xuuul I lllg CTIITTTTRS" S
\Q\ 1% HAE It n‘ il
i -

Magnetically Driven Implosion

1/20 MA\* Diamete ote
R/1 mm : ‘

Prnag(Mbar) = 62(
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Beryllium liner (MagLIF)

drive Diameter = 6 mm

current Cathode -

1
~7 Mbar - >100 Mbar during expt.

Peak electrical current ~ 20 MA
Rise time ~ 100 nanoseconds




Both Omega and NIF are being used to study key aspects of the physics m
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J.R. Davies et al., Phys. Plasmas (2017). Backscatter

D.H. Barnak et al., Phys. Plasmas (2017). “'

E.C. Hansen et al., Phys. Plasmas (2018). ’ -
J.R. Davies et al., Phys. Plasmas (2019). ...  SBS}

E.C. Hansen et al., Phys. Plasmas (2020). R R Spectroscopy
D.H. Barnak et al., Phys. Plasmas (2020).

B. Pollock et al., APS-DPP 2021



s | Integrated MagLIF experiments on both Z and Omega have demonstrated the I
fundamental principles of MIF

Thermonuclear neutrons, multi-keV
temperatures from high aspect-ratio, 0
cylindrical fuel assemblies.

Hallmark of MIF: significant fusion only when
both the laser preheat and magnetization

stages are present.
DD neutron yields
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We have used a combination of Bayesian data analysis techniques to determine
9 | the plasma conditions and Lawson criteria for our integrated experiments™

* We analyzed a database of 36 MagLIF
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Xperimen in k to 2015
o i experiments dating back t
be * Includes a wide range of neutron
300 0, \ ——LS yields, preheat configurations, initial
§ \ . magnetic field strengths, fill densities,
o 32 etc.
5 9 &0
2 1.00 205 * Method finds plasma parameters
o \ consistent with the full ensemble of
0.50 different data, not just a handful of
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* P.F. Knapp et al., manuscript in preparation.



Multiple existing data points show the ability to scale to self-heating at realizable
0% drive current

-13.0

e Using analytic scaling theory*, we
can assess the performance of
experimental data points at larger

125 driver energy

* We choose a scaling path that
a preserves implosion time,
2 radiation losses, ion-conduction
0
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losses, and end-losses
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* P.F. Schmit and D.E. Ruiz., Phys. Plasmas 27, 062707 (2020)



Pressure [Gbar]
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Preheat: 3000 J
Gas Fill: 1.75 mg/cc
Seed Field: 30 T
Peak Current: 20 MA
10°

10° 10!
Temperature [keV]

*S.A. Slutz, et al., Physics of Plasmas 23, 022702 (2016)
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Peak Current

-30

-20

23179 40 MA
23236 1.1 38 MA
23576 0.7 45 MA
*Opt. 21 28 MA

49 MA

44 MA

62 MA

41 MA

5-10

3-4.2

* The optimized target exceeds Y,,.,=1 MJ at

the lowest drive current

* Yield amplification due to a-heating is 3-4x

e At 60 MA this target produces >40 MJ



The NNSA has begun working toward a Next Generation Pulsed Power
12 | project that Sandia anticipates will be capable of tens of M] yields

Acting NA-113 director Sarah Nelson memo
to James Peery on September 30, 2021

* We are presently working on defining the specific e /
mission need and requirements with the NNSA oty
and our nuclear security enterprise partners

September 30, 2021

 The nominal proposal is a facility that would be .
~3X the Size and ~9X the power Of the existing Z ACTING DIRECTOR, OFFICE OF EXPERIMENTAL SCIENCE

TO: JAMES S. PEERY

facility at Sandia National Laboratories PIRECTOR, SANDIA NATIONAL LAGORATORY

SUBJECT: Authorization for Preparation of mission needs and program requirements
document

* Like Z today, it would support the missions of all | . -
. . Acting Deputy Administrator for Def§n§§ Programs Phil Calbos in a memo dated July 12,
three NNSA laboratories and provide data on 2018, authorized th art of C actts and Analysisof Allemativs (308) forseverl

. H H H In accordance with that memo and after further review and consultation with the Office of
° H OStI | e ra d I at I O n e nVI ro n m e nts Experimental Science Executives, NA-113 1s now ready to pursue CD-0 for a “Next
Generation Pulsed Power (NGPP)” capability as a key component of a future HED portfolio.

° Dy Nam i CMa te ri d | p ro p e rt i es The present memo thereby authorizes the commencement of the Mission Need Statement

(MNS) and Program Requirements Document (PRD) preparations needed to achieve CD-

PY Complex Wea pons phySiCS 0. As such, the cognizant NA-113 program manager for NGPP, Ann Satsangi, will reach out

to define and determine the approach forward.

cc:
NA-APM Richard Persons, Jennifer Hoynak
SNL Susan Seestrom, Dan Sinars, Nancy Davis




