

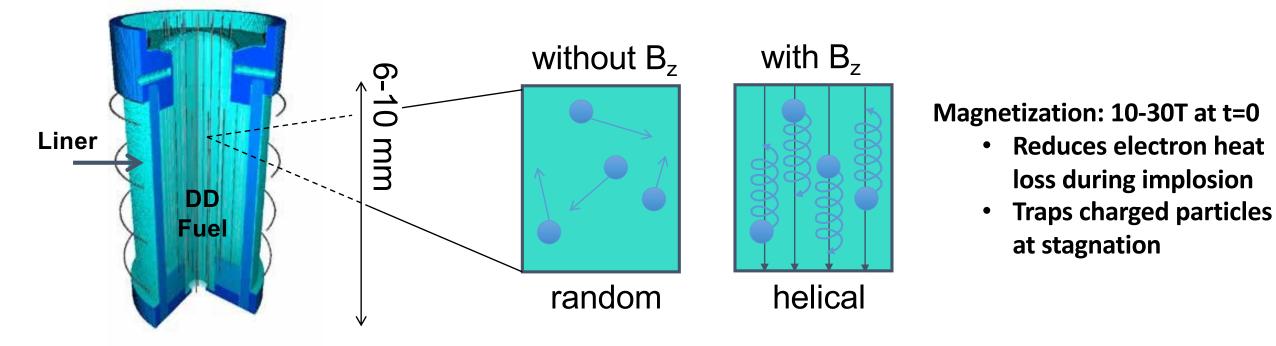
Magneto-Inertial Fusion: Scaling to multi-MJ yields in the laboratory

PRESENTED BY

Daniel Sinars

Director, Pulsed Power Sciences Program Executive, Inertial Confinement Fusion & Assessment Science Sandia National Laboratories

Fusion Power Associates | December 15-16, 2021

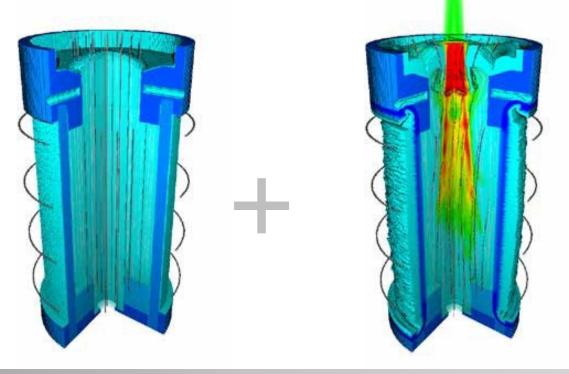


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of

Energy's National Nuclear Security Administration under contract DE-NA0003525.

² MagLIF is a Magneto-Inertial Fusion (MIF) concept

Relies on three components to produce fusion conditions at stagnation



Magnetization

- Suppress radial thermal conduction losses
- Enable slow implosion with thick target walls

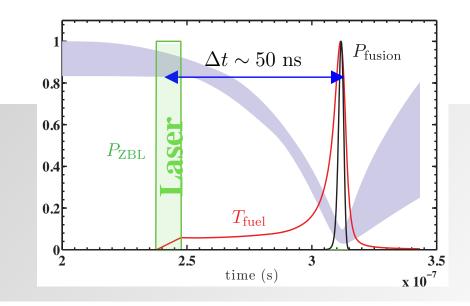
MagLIF is a Magneto-Inertial Fusion (MIF) concept

Relies on three components to produce fusion conditions at stagnation

Magnetization

3

- Suppress radial thermal Ionize fuel to lock in Bconduction losses
- Enable slow implosion with thick target walls


Preheat

- field
- Increase adiabat to limit required convergence

- Laser preheat: 100-200 eV
 - **Uses Z-Beamlet Laser** •
 - **Relax convergence requirement**

G D

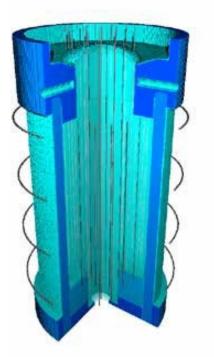
 $CR=R_{initial}/R_{final}=120 \rightarrow 20-40$

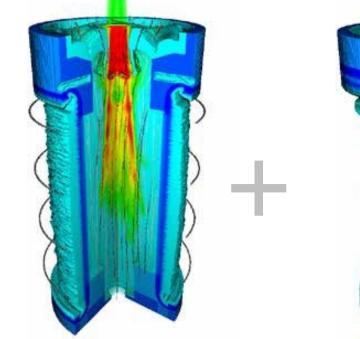
63 MagLIF is a Magneto-Inertial Fusion (MIF) concept 4 Relies on three components to produce fusion conditions at stagnation BΨ Current **Magnetically Driven Implosion Relatively low implosion** JxB JxB velocity ~100 km/s B-field amplified to >few kT •

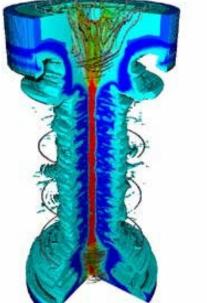
Magnetization

- Suppress radial thermal Ionize fuel to lock in Bconduction losses
- Enable slow implosion with thick target walls

Preheat


- field
- Increase adiabat to limit required convergence


Implosion


- PdV work to heat fuel
- Flux compression to amplify B-field

MagLIF is a Magneto-Inertial Fusion (MIF) concept 5

Relies on three components to produce fusion conditions at stagnation

Stagnation

67

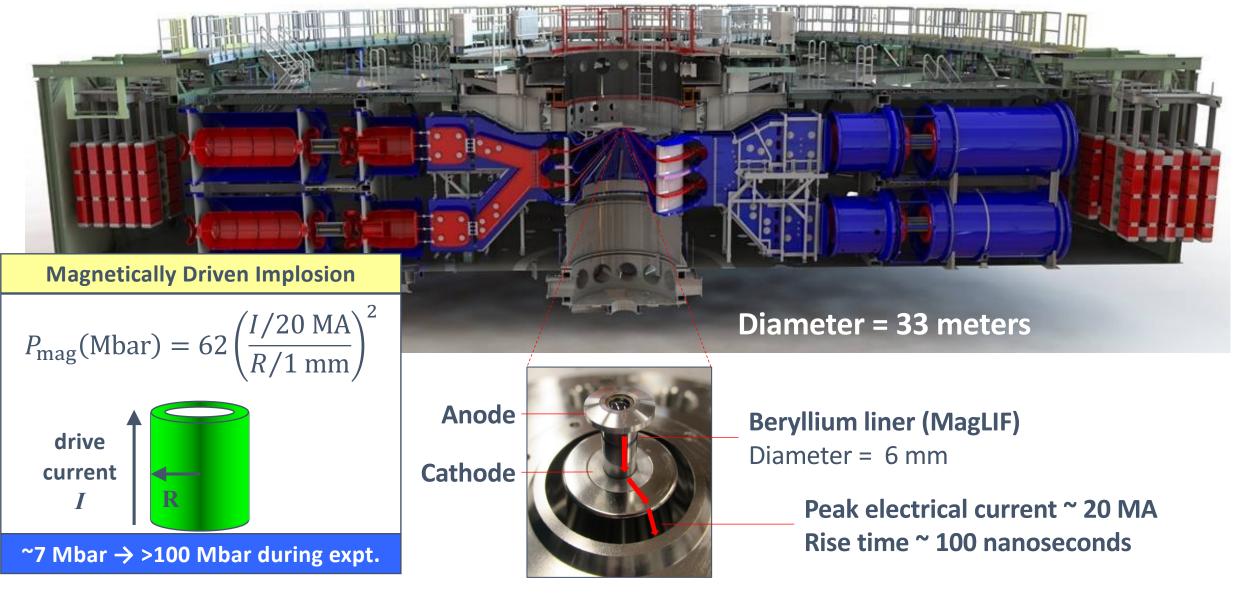
- Several keV temperature, ~1 g/cm³ fuel density
- Several kT B-field traps charged fusion products

Magnetization

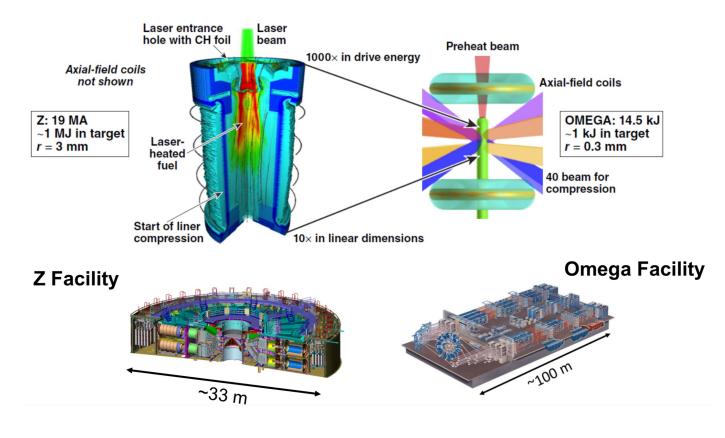
- Suppress radial thermal Ionize fuel to lock in Bconduction losses
- Enable slow implosion with thick target walls

Preheat

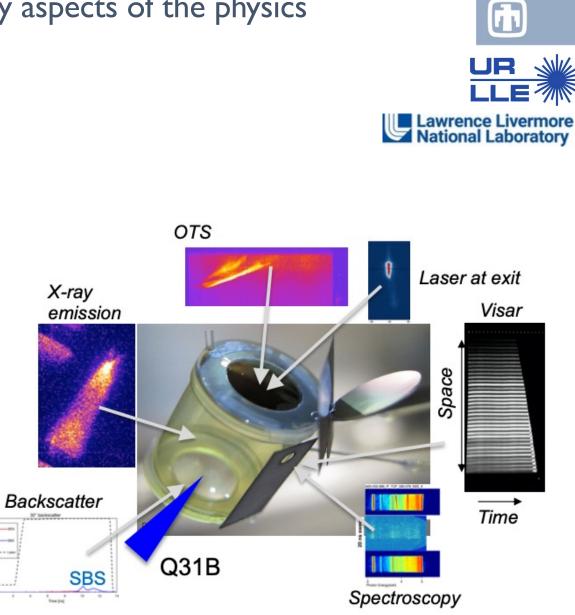
- field
- Increase adiabat to limit required convergence


Implosion

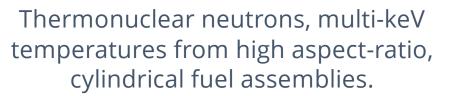
- PdV work to heat fuel
- Flux compression to amplify B-field

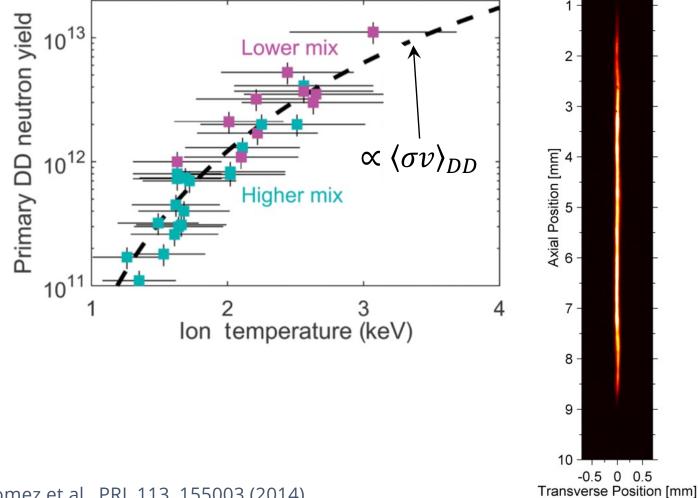

We have been using the multi-MJ Z pulsed power facility and the adjacent multi-kJ Z-Beamlet laser to perform integrated tests of the MagLIF concept since 2015

Z Pulsed Power Facility


(h)

Both Omega and NIF are being used to study key aspects of the physics

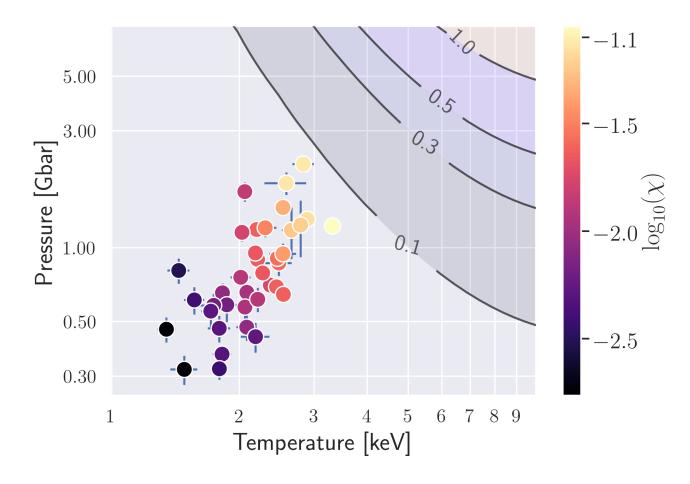

J.R. Davies *et al.*, Phys. Plasmas (2017).
D.H. Barnak *et al.*, Phys. Plasmas (2017).
E.C. Hansen *et al.*, Phys. Plasmas (2018).
J.R. Davies *et al.*, Phys. Plasmas (2019).
E.C. Hansen *et al.*, Phys. Plasmas (2020).
D.H. Barnak *et al.*, Phys. Plasmas (2020).



B. Pollock et al., APS-DPP 2021

7

Integrated MagLIF experiments on both Z and Omega have demonstrated the fundamental principles of MIF


Hallmark of MIF: significant fusion only when both the laser preheat and magnetization stages are present.

DD neutron yields

	No B-field	B-field	
No Preheat	3×10 ⁹	1×10 ¹⁰	
Preheat	4×10 ¹⁰	Up to 10 ¹³	

Gomez et al., PRL 113, 155003 (2014) Gomez et al., PRL 125, 155002 (2020) We have used a combination of Bayesian data analysis techniques to determine the plasma conditions and Lawson criteria for our integrated experiments*

- We analyzed a database of 36 MagLIF experiments dating back to 2015
- Includes a wide range of neutron yields, preheat configurations, initial magnetic field strengths, fill densities, etc.
- Method finds plasma parameters consistent with the full ensemble of different data, not just a handful of instruments

$$\chi = \frac{\varepsilon_{\alpha}}{24} P_{\rm HS} \tau_{\rm E} \frac{\langle \sigma v \rangle_{\rm DT}}{T^2}$$

* P.F. Knapp *et al.*, manuscript in preparation.

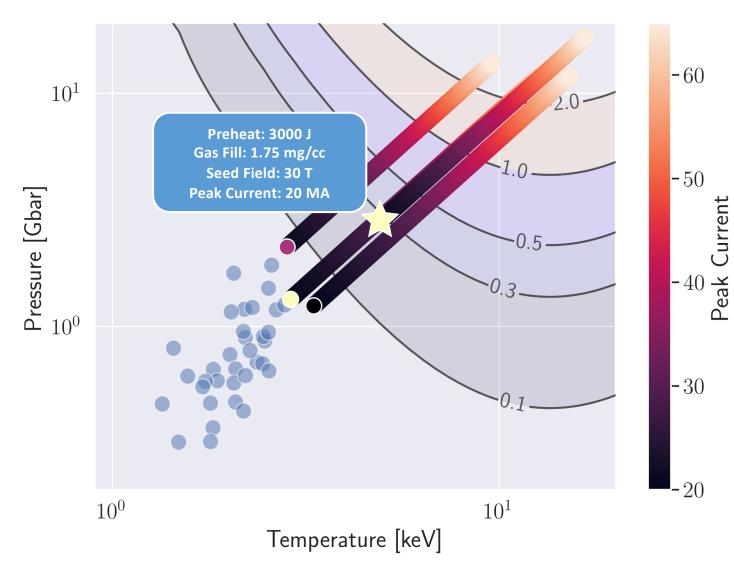
Multiple existing data points show the ability to scale to self-heating at realizable drive current

 Using analytic scaling theory*, we can assess the performance of experimental data points at larger driver energy

• We choose a scaling path that preserves implosion time, radiation losses, ion-conduction losses, and end-losses

$$P_{\rm no-lpha} \propto I_{\rm peak}^{1.5}$$

$$T_{\rm no-\alpha} \propto I_{\rm peak}$$


$$Y_{
m no-lpha} \propto I_{
m peak}^{6.2}$$

* P.F. Schmit and D.E. Ruiz., Phys. Plasmas 27, 062707 (2020)

10

¹¹ A design utilizing optimized input parameters on Z scales to tens of MJ's at ~60 MA

-60	Shot	Y _{DD} [10 ¹³]	χ _{no-α} =1	Y _{no-α} =1 MJ	Υ _α [MJ]
Current 05 -	z3179	0.5	40 MA	49 MA	6-10
	z3236	1.1	38 MA	44 MA	5-9
	z3576	0.7	45 MA	62 MA	5-10
	*Opt.	21	28 MA	41 MA	3-4.2

• The optimized target exceeds $Y_{no-\alpha}$ =1 MJ at the lowest drive current

• Yield amplification due to α -heating is 3-4x

• At 60 MA this target produces >40 MJ

*S.A. Slutz, et al., Physics of Plasmas **23**, 022702 (2016)

The NNSA has begun working toward a Next Generation Pulsed Power project that Sandia anticipates will be capable of tens of MJ yields

- We are presently working on defining the specific mission need and requirements with the NNSA and our nuclear security enterprise partners
- The nominal proposal is a facility that would be ~3x the size and ~9x the power of the existing Z facility at Sandia National Laboratories
- Like Z today, it would support the missions of all three NNSA laboratories and provide data on
 - Hostile radiation environments
 - Dynamic material properties
 - Complex weapons physics

12

NNS Department of Energy National Nuclear Security Administration Washington, DC 20585 September 30, 2021 FROM: SARAH NELSON ACTING DIRECTOR, OFFICE OF EXPERIMENTAL SCIENCE TO: JAMES S. PEERY DIRECTOR, SANDIA NATIONAL LABORATORY Authorization for Preparation of mission needs and program requirements SUBJECT: document Acting Deputy Administrator for Defense Programs Phil Calbos in a memo dated July 12, 2018, authorized the start of CD-0 activities and Analysis of Alternatives (AoA) for several projects including a "Future HED Capability" for NA-113. In accordance with that memo and after further review and consultation with the Office of Experimental Science Executives, NA-113 is now ready to pursue CD-0 for a "Next Generation Pulsed Power (NGPP)" capability as a key component of a future HED portfolio. The present memo thereby authorizes the commencement of the Mission Need Statement (MNS) and Program Requirements Document (PRD) preparations needed to achieve CD-0. As such, the cognizant NA-113 program manager for NGPP, Ann Satsangi, will reach out to define and determine the approach forward.

Richard Persons, Jennifer Hoynak

Susan Seestrom, Dan Sinars, Nancy Davis

CC:

NA-APM

SNL

Acting NA-113 director Sarah Nelson memo to James Peery on September 30, 2021