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National Ignition Facility (NIF)  recently achieved a record inertial 
fusion yield 1.3 MJ  with 1.9 MJ of laser energy (gain =0.7)
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Indirect Drive – laser light converted to x-
rays that drive the implosion – approach 
chosen for NIF. 

• The result is particularly impressive as the 1.3 MJ yield was achieved with only 230 kJ of x-rays 
absorbed by the capsule. 

The NIF result demonstrated basic feasibility of inertial confinement fusion 



Direct laser drive is a much more efficient approach

Direct Laser Drive – laser light directly 
illuminates the capsule   

• Much more efficient than indirect drive (>6x)

• Potential to reach the high gains (100) required 
for the fusion energy application.  

3

Best laser driver for high performance  

• Highly uniform target illumination

• Multi-THz bandwidth to suppress laser-plasma 
instabilities (LPI)

• Capable of zooming the focal diameter to follow 
imploding target

• Shorter laser wavelength to further suppress LPI 
and increase hydro-efficiency of implosion

• The 193 nm ArF laser best meets all of the 
above criteria



Target
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The effects of broad laser bandwidth with short laser wavelength on cross 

beam energy transfer (CBET) scattering in a full-scale, spherical ICF plasma

LPSE* simulations used 16 beams, each with intensity 5 x 1014 W/cm2

* code was developed at LLE

Increased absorption ArF & KrF excimer lasers is due to both shorter

wavelengths & larger bandwidths which reduce CBET scattering.

Laser

Driver
wavelength bandwidth absorption

3rd-harmonic 

Nd:glass
351 nm 1 THZ 65%

KrF 248 nm 3 THz 86%

ArF 193 nm 5 THz 91%



Simulations using the LPSE code show the benefits of bandwidth and shorter 

wavelength for mitigating the two plasmon decay (TPD) instability

• Analytic TPD threshold for a single monochromatic

plane wave beam given by*

•2D, plane-wave, LPSE simulation results agree

with theoretical predictions in limit of zero

bandwidth, and have the ratio

*A. Simon, R. W. Short, E. A. Williams and T. Dewandre, Phys. Fluids 26, 3107 (1983).
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Hydrocode simulations show increased drive pressure and reduced risk 
from the two-plasmon decay instability with shorter laser wavelength  

527 nm

351 nm

248 nm (KrF)

TPD thresholds vs laser  from hydrocode
1015 W/cm2 2.6 mm solid CH sphere 

193 nm (ArF)

Direct drive ablation pressure increase's 
with shorter laser wavelength  

Ablation pressure vs laser  from hydrocode
1015 W/cm2 2.6 mm solid CH sphere 

In this simulation one remains below 
the TBD threshold with 193 nm light 



NRL FAST radiation hydrocode 1-dimensional simulations of the gain of conventional and 
shock ignition!,2 direct-drive implosions for ArF, KrF and a frequency tripled glass laser. 

1.R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobold, A.A. Solodov, Phys. Rev. Lett. 98 (2007) 155001. 
4 Simulations of high-gain shock-ignited inertial-confinement-fusion implosions using less than 1 MJ of direct KrF-laser energy, Jason W. Bates, Andrew J. Schmitt , David E. Fyfe , 
Steve P. Obenschain , Steve T. Zalesak, High Energy Density Physics 6 (2010) 128–134 

LPI/CBET not included 



8

NRL simulations indicate an ArF laser can achieve target gains (>100) needed for 
laser fusion power plant with much less laser energy than achieved by NIF 

Sample NRL 2D simulation of a ArF driven implosion that includes effects of an imperfect target 

time   

• This ArF driven shock-ignited target implosion achieved 160x fusion gain 
(ratio of fusion energy out to laser energy in) with 411 kJ of  laser energy,  
less than ¼ of NIF’s energy (1,900 kJ )

• An ArF laser with 10% electrical efficiency needs  100x fusion gain for the 
power plant application. 

0.6 
mm

0.12 
mm

temperature

density 

A. Schmitt  DPP 2021 
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The NRL Electra electron-beam-pumped system is  advancing the S&T 
of the ArF  laser

• Demonstrated 5 pulse per second 
operation with similar KrF configuration

• Converted to ArF to advance its S&T

• World record ArF energy (200J) 

• 7 THz FWHM bandwidth 193 nm light 
observed with Electra

• Kinetic simulations predict 10 THz 
feasible on large ArF systems with 
>16% intrinsic efficiency 

• Expect 10% net electrical efficiency  

NRL Electra Facility 

Pulse lineArF gas cell J. Weaver  DPP 2021 
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Power flow in 425 MWe ArF power plant
0.65 MJ ArF laser operating @ 10 pulses/sec.  



3-phase plan to develop a 400 MWe ArF laser fusion power plant
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Phase I 

Power plant tech 
•Advance high rep (10 
shots/sec) laser tech

• Identify other critical tech 
for power plant  

Phase II 

DEMO high fusion gain  
•Advance ArF S&T

•Build full scale 30 kJ ArF 
beamline (10 shots/hour)

DEMO high fusion gain 

•Build 700 kJ implosion 
facility. >100 shots/day 

•DEMO  robust gain >100    

Power plant tech 

•Build high rep rate (10 
shots/sec ArF beamline

• Develop all tech needed 
for power plant  

Phase III 

Pilot  400 MWe ArF 
laser fusion power 

plant  

•Complete design & build 

•Test components & 
procedures.

•Generate power

The ArF laser could enable power plants with laser energy below 1 MJ, which 
would speed development time and reduce cost. 



ArF laser direct drive inertial fusion – path to fusion energy  

• The physics underpinnings for laser fusion are well established.

• The deep UV broad bandwidth light from the ArF laser could be “game changing” 
towards reduced cost and development time for inertial fusion power plants.
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