

Progress on the Stellarator Path to Fusion Power

M.C. Zarnstorff

Princeton Plasma Physics Laboratory

Fusion Power Associates Meeting
Washington DC
16 December 2021

Motivation: Why Stellarators?

Stellarators potentially provide a path to a reduced cost, compact fusion system

- Eliminate disruptions
- Eliminate external current-drive and need to improve CD efficiency
- Reduced recirculating power, improved system efficiency
- Smaller balance of plant (due to low recirculating power)
- Static or slowly varying magnetic field, simplifying superconducting coils

What is New?

W7-X has validated much of its design optimization

- Neoclassical transport can be designed to be small, sub-dominant
- Then: turbulent transport dominates, just as in tokamaks
- Dominantly ITG (Ion Temperature Gradient) & TEM (Trapped Electron)
 Successfully modeled by same theory & codes used for tokamaks
- H (ISSO4) = 1.4 with pellet fueling & peaked density profiles
- Divertor design validated. Stable detached operation achieved.

LHD has achieved high plasma parameters in D operation

- Ti(0) ~ Te(0) = 10 keV (at low density)
- Beta up to 3.5% at low collisionality B=1 T. Up to 5% at B=0.4 T

US Activities Focused on Gap Reduction

Examples Include

- Reduce turbulent transport, increase plasma confinement
- Optimize fast ion confinement
- Simplify magnet coils for 3D Stellarator shaping
 - Reduce costs, improve maintenance access

Develop new stellarator fusion plant designs with improved optimization

Continuous Pellet Injector for W7X

- Ready for 2022 campaign.
- Continuous pellet fueling (30 min@ 10 Hz) 600-1200 m/s.
- Collaboration of ORNL, PPPL, IPP, NIFS
- Density profile control via pellet fueling for turbulent transport optimization
- Link real-time diagnostics with pellet control

Boron Powder Injection in LHD -> Strong Reduction of Turbulence, Increased Confinement

- Turbulent density fluctuation amplitude decreased by 2 times (PCI), perpendicular velocity doubled in the edge
- Before injection, peak of fluctuation for k_⊥~0.3 mm⁻¹, consistent with ITG turbulence [Nunami 2011, Tanaka 2020]
- Suppressed during B injection, together with higher k_{\perp} fluctuations
- Thermal diffusivities reduced by up to 50% in edge
- T_e, T_i increased ~25%

F. Nespoli et al, accepted Nature Physics

HSX Upgrade: Higher B, P-ECH, density

Magnetic field increasing to 1.25T

New Gyrotron

- 70 GHz, 500 kW gyrotron donated by IPP Greifswald
- X2 mode operation at 1.25 T
- Cut-off density: 3.0 x 10¹⁹/m³
 - \rightarrow operation planned with 2 x $10^{19}/\text{m}^3$
- Good absorption expected (> 90%)

New power supply installed

Installation of a 60 kV power supply

New transmission line designed

"HSX Upgrade" will be completed early in 2022.

→ Studies of the density profile and its impact on TEM

GENE predicts TEM Turbulent Transport can be Reduced in HSX

Linear GENE simulations for 100 configurations show strong correlation between plasma elongation and TEM growth rates

- Elongation can be controlled by coil-currents
- Non-linear heat fluxes from GENE simulations decrease with elongation (about 3-times lower than standard QHS)

Optimization of HSX TEM via coil-currents appears to be possible and will be tested experimentally!

Hidden Symmetries Project: Improved Stellarator Optimization

Objective: To create and exploit an effective mathematical and computational framework for the design of stellarators with hidden symmetries.

- International interdisciplinary collaboration: plasma physics, optimization theory, dynamical systems and PDE theory.
- From fundamental results to computational tools to experimental designs.
- A new optimization code (SIMSOPT, SIMonS OPTimization code) that can exploit the full power of parallel computers
- New techniques, such as adjoint methods and automatic differentiation
- Designs of next-generation stellarator experiments.

New Optimization Approaches: Precise Quasi-Symmetry

QA

 $|\mathbf{B}|[\mathbf{T}]$

- New optimization algorithms & code (SIMSOPT) is able to achieve extremely good quasi-symmetry (fixed boundary)
- Better neoclassical optimization than all existing designs and experiments, over whole plasma cross-section
- Also achieves ideal fast ion confinement no loss!
- Next focus is turbulent transport optimization

Simplify Coils: Permanent Magnets for Shaping

PM4STELL Project:

- Construct ½-period of a 3-period
 QA stellarator as <u>engineering test</u>
- Reuse NCSX vessel & planar TF coils
- Expected permanent magnet thickness ~25 cm for B_T=0.5 T
- Improve physics properties over NCSX, particularly fast ion confinement

Funded by ARPA-E, FES,
Stellar Energy Foundation

Assembly concept "Post-office Box"

MUSE: Optimized Stellarator with Simple Coils

(B)

 10^{-2}

 10^{-3}

 10^{-5}

 10^{-6}

2,5 6 10-4

- Inexpensive Quasi-Axisymmetric (QA) highly optimized stellarator
- |B| independent of toroidal angle in Boozer coordinates
- Better neoclassical transport metrics than existing stellarator built with coils
- Permanent magnets + planar TF coils
- Related approaches available at high B: diamagnets or HTS saddle/dipole coils

R = 30.5 cm, B=0.15T,

 $|b_{mn}|_2$

 10^{-1}

New Pilot Plant Designs Starting

- FESAC Long Range Plan identified importance of a timely Stellarator Pilot Plant design activity.
- Consistent with NASEM Report recommendations.
- Conceptual designs being developed by several groups in preparation for National Pilot Plant Team activities
 - -- PPPL: Straight outer coil-leg QA designs being combined with permanent magnets and other magnetic dipoles for good maintenance and physics properties
 - -- U. Wisconsin: WISTELL-A and -B optimized QH designs (A. Bader et al)

STELLARATORS: BEST SUITED FOR POWER PLANTS

- Type One Energy is leveraging breakthrough technologies to accelerate fusion energy
 - Modern manufacturing for high-precision fabrication of high-complexity components
 - HTS magnets for higher fields
 - Advanced configuration optimization to maximize performance
- We are targeting rapid demonstration of net energy gain
 - Q>1 with conservative physics: no improvements needed to what has been achieved
 - Physics optimization can access enormous upside: Q=∞
 - Parallel development of reactor technologies to enable a pilot plant in the 2030's
- Retiring key HTS risks in partnership with MIT, CFS and UW-Madison under ARPA-E grant

MIT HTS
'VIPER'
cable
modified to
permit
bend radii <
10 cm

HTS non-planar cable with typical curvatures tested at 77 K with no loss of critical current density

Work
underway to
fabricate a twoturn model coil
with 3D printed
metal support
plates

Summary: Substantial Progress on Path

- W7-X: validation of design approach, reducing neoclassical transport to subdominant
- W7-X: demonstration of stable detached divertor operation
- LHD: Ti(0), Te(0) ~10 keV in D operation
- Demonstration of methods to reduce ITG / TEM turbulence
- New optimization strategies to reduce turbulence, eliminate fast ion losses
- New methods to simplify stellarator coils, using permanent magnets, HTS, and related approaches

It is time for a detailed Stellarator Pilot Plant design activity (FESAC LRP, NASEM)

Private companies are forming to advance the Stellarator approach.