FUSION POWER ASSOCIATES: 42nd Annual Meeting and Symposium

Fusion Research and Activities in ASIPP

Yuntao Song December 15, 2021

Institute of Plasma Physics, Chinese Academy of Sciences

Contents

- ASIPP strategy towards Fusion Power Plant
- Devices/Programs ASIPP involved in and related progresses
 - EAST
 - ITER
 - CRAFT
 - BEST
 - CFETR
- Summary

New strategy of ASIPP towards FPP

A new planed D-T devices, BEST, to support CFETR with a low risk and cost,

Relationship between devices involved by ASIPP

EAST Mission: Steady state operation and key physics

- Steady state operation scenario with high performance
- Experimentally support of key physics
- Validation of novel technology for future devices

- Advanced scenario development
- Confinement and transport
- MHD and disruption
- Pedestal physics
- Divertor and PWI issues
- Energetic particle instabilities

EAST machine status and capability

Upgraded lower W-Divertor

LHCD PAM antenna

ICRF low k antenna

Upgraded vacuum system

- 1. Full metal wall with ITER like W-Divertor
 - W/Cu structure lower divertor with heat exhaust of 10 MW/m²
- 2. Flexible H&CD combination (with total source power ~30 MW)
 - LHCD with PAM antenna, ICRF with low k antenna, 4 ECRH systems, 2 co-NBIs

Steady-state high \(\beta \) scenario development

- 61.2s H-mode sustained with enhanced RF-heating
 - $H_{98y2} \sim 1.2$, $f_{GW} \sim 0.7$, $\beta_p \sim 2.1$, $\beta_N \sim 1.7$, $V_{loop} \sim 0$
 - Robust iso-flux control with Strike Points to W-divertor
- 101s H-mode in 2017
 - $H_{98y2} \sim 1.1$, $f_{Gr} \sim 0.6$, $\beta_p \sim 1.2$, $\beta_N \sim 1.0$, $V_{loop} \sim 0$

Fusion performance extended on EAST

- Fully non-inductive plasma with q95~6.0-7.0
- Extended operational regime
 - − High density f_{GW}~0.8
 - $-f_{BS} \sim 50\%$
- Dominant e-heating, zero torque
- Small ELMs with well impurity control
- Improved confinement
 - $-H_{98y2}\sim 1.4$
 - e-ITB inside r<0.4

Close to 1GW CFETR Performance

Active detachment & W erosion control on EAST

EAST successfully demonstrates the active control scheme of detachment, addressing a key issue of ITER

- Divertor T_{et} feedback control > 25 s
- H_{98y2}>1, good core-edge integration

- W erosion at the new divertor totally suppressed in detached condition
- Relative large ELMy H-mode with Neon

A significant progress on PWI control for long pulse core-edge integration

EAST next goal and plan

- Demonstrations of high power injection (>10MW)
 - w/o hot spot on guarder limiter for 4.6GHz LHW (4.0-6.0MW ~70%)
 - Coupling more ICRF power with new coating antenna (4.0-6.0MW ~50%)
 - The three gyrotrons of ECRH (1.5MW ~50%)
 - Favorable NB operational regime with less fast ion loss (4.0-6.0MW ~75%)
 - Compatibility and synergy effect with different heating schemes
- Extension of plasma operation with Available & Reliable 6.0-10MW (High priority)
 - Relevant physics research in support of future long pulse H-mode with high performance
 - Scenarios Development: High Beta SSO / Hybrid /AT
 - H&CD, T&C, DSOL physics, dynamic control, EP physics, etc.
 - Exploration of high performance regime relevant to ITER when more power is available
- EAST 2021 timeline

Months	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	
Physics Exp.	Upgrade and Preparatory			1 st Campaign				2 nd Camp.				

ASIPP contributions to ITER

A major ITER contributor in China:

- Up to 73% ITER procurement packages (PAs) in China
- Other ITER contracts like PF6, TAC1, Bellows...
- ➤ Human resource support to ITER: IPAs, visiting scientists...

ASIPP contributions to ITER: PAs

Conductors: 100% finished.

Feeder: R&D finished, 62% produced, planning to finish in 2024.

AC/DC: All components were delivered to ITER site in Sept, 2021; PPEN: on-site installation support is going on.

CC: 72% produced, planning to finish in 2023.

12/26

Yuntao Song/42nd FPA/Dec. 15 2021

ASIPP contributions to ITER: Contracts

PF6 Coil

ITER Assembly (TAC1)

Large Bellows

13/26

Yuntao Song/42nd FPA/Dec. 15 2021

CRAFT national project, supporting future devices (BEST/CFETR)

Comprehensive Research fAcilities for Fusion Technology

Approved	Chinese National Government	
Mission	Key research platforms system R&D in support of future devices (BEST/CFETR)	
Schedule	2019-2025	
Status	Under construction, campus nearly finished	
B SA	B5	

CRAFT national project, supporting future devices (BEST/CFETR)

CRAFT Progress (part)

To be ready in 2025

Superconductor Test Facility (16.5T, 100KA)

Evaluation of Conductor and joint performance

Superconducting magnets test facility
Large-scale magnets performance (safety,
stability, reliability...)

Divertor test facility (20MW/m²)

BEST facility (under design)

Burning plasma Experimental Superconducting Tokamak

- Burning plasma with lower cost (construction and operation)
- To understand Alpha particle behavior and its control
- To develop the integrated control of a **fusion steady** state scenario

Main design parameters for BEST

- Burning plasma physics with Q >5 as baseline
- DT plasma in steady-state at low Q (Q<1), with adequate neutron fluence for material, blanket and fuel inventory testing.
- > Develop and explore methods for achieving high Q operation applicable to fusion pilot plants.

Main parameters						
Plasma current	I _p =4-7 MA					
Major radius	R=3.6 m					
Minor radius	a=1.1 m					
Elongation	κ=a/b=1.9					
Toroidal field	B _T =6.15 T					

"In general, we fully support the concept of a device of this size and objectives as a critical step in the Chinese program to lead to CFETR"

—BEST PAC 2021(July 29-30

CFETR: Chinese Fusion Engineering Test Reactor

CFETR: A DEMO facility before FPP in China

- > Self-sustained burning plasma with
 - i) high fusion power (200-1500MW),
 - ii) high duty cycle (≥0.5),
 - iii) high fusion gain (Q=3-30)
- ➤ Tritium breeding technology with TBR≥1

CFETR design project completed in 2021

87 tasks, >800 people involved

CFETR design progress: Physics

Scenario design

	P _{fus} (GW)	P _{NB} /P _{EC} (MW)	H _{98y2}	β_N/β_P	f _{bs} /l _i	I _p (MA)	n _{e,line} (10 ²⁰ / m ³)
Hybrid					0.45/0.9		1.0
ss	1.0	30/55	1.33	3.0/2.5	0.78/0.8	10.5	0.92

Hybrid and Steady State scenarios

Configuration and divertor

- Conventional SN divertor
- Detachment with Ne injection
- Compatible with blanket

CFETR design progress: Engineering

Collaboration: Networks and organizations

Domestic networks

Example: SIFFER (Sino-French Fusion Energy center)

Members:

IRFM (FR)
ITER CNDA (CN)
ASIPP (CN)
SWIP (CN)

SPAs:

Integrated Modeling W-Divertor ICRH Infrared monitoring

Collaboration: Joint Experiments on EAST

EAST: A shared and open platform to the world

Example: DIII-D & EAST joint experiment

Collaboration: Fusion technology for the world

Summary: ASIPP Fusion Research Strategy

> Fasten application of clean, safe, non-carbon fusion energy

- EAST: Continually exploring SSO and other critical physical issues in support of ITER/BEST/CFETR.
- ITER: Actively participating in construction and operations in support of BEST/CFETR
- CRAFT: Developing of key techniques/materials for BEST/CFETR with innovations and ITER reference.
- BEST: Fusion reactor related D-T burning plasma with low cost and risk in support of CFETR
- CFETR: a planed China DEMO FPP with supports from EAST/BEST/CRAFT
- Strengthen global collaboration and train young generation to support this strategy

