## **Fusion Energy Sciences Program at LLNL**

**2021** Fusion Power Associates Meeting

Harry S. McLean Program Leader, Fusion Energy Sciences Program Associate Division Leader, PLS/Physics

December 15-16, 2021

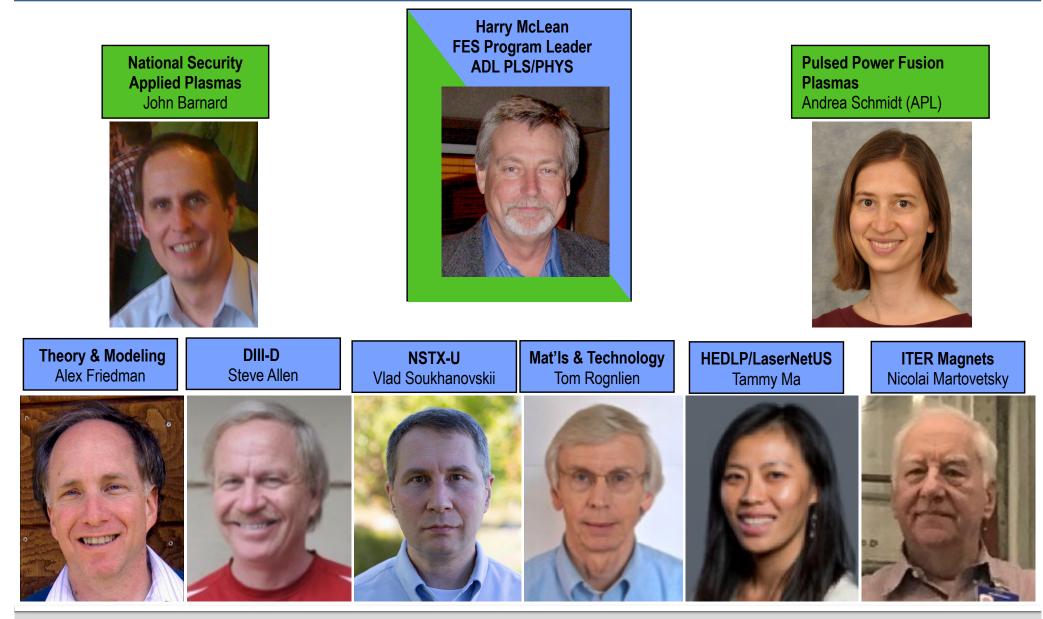


LLNL-PRES-830677



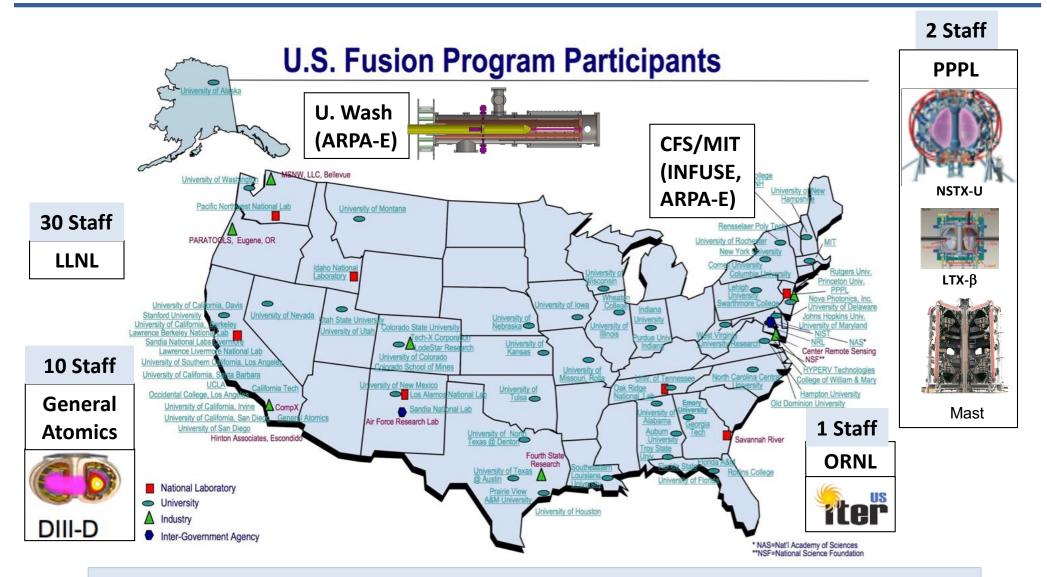
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

## The Fusion Energy Sciences Program (FESP) at LLNL delivers mission science, discovery science, and workforce development


FESP's broad engagement across LLNL provides scientific depth and flexibility in applying resources

- Fusion Science and Plasma Physics: core competencies and disciplines essential to LLNL's mission-based science from both NNSA and SC perspectives.
- S&T for HEDS: The SKAs underlying Burning Plasmas is central to LLNL's HEDS applications space.
- Partnering within LLNL: exploit capabilities within LLNL's Physical Sciences, Computations, and Engineering Directorates
- Partnering with other DOE Labs, Academia and Industry: LLNL has experimental and theoretical collaborations with all major DOE FES facilities as well as PI and co-PI roles in multi-institutional fusion centers.

#### FESP at LLNL is the POC for two DOE Offices: SC/FES and ARPA-E/Fusion




## **LLNL FES Program and Discipline FY22 Leadership**





## LLNL/FESP participates at the primary US MFE Facilities



National presence is boosted by having permanent LLNL staff in residence



## LLNL/FESP also participates at LaserNetUS and other HEDLP Sites



LLNL helps manage procurements and other needs to execute experiments



## LLNL's Fusion Energy Sciences Program (FESP) has funded activities in all SC FES research categories

#### SC FES FY21 (672 M\$)

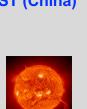
- Foundations (288M)
  - MFE Experiments
  - MFE Theory
- Long Pulse (73M)
  - Superconducting Tokamaks
  - Stellarator Experiments
  - Materials
  - Technology
- Discovery Plasma Sci. (54M)
  - General Plasma Science
  - Measurement Innovation
  - HEDLP: Expts at JLF, NIF, SLAC/LCLS, LLE/OMEGA
  - Quantum Information Sci
- ITER + MEC (257M)
  - US-ITER Project Office
  - ITER Organization
  - MEC ~ 15 M



ITER (France)

#### **LLNL FES Program**

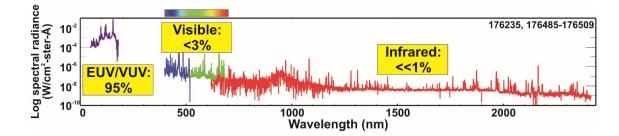
- Foundations:
  - DIII-D collaboration at GA, 10 LLNL staff in residence
  - **PPPL, MAST (UK)** collaboration, 2 staff in residence
  - Theory & Modeling + SciDACS, 16 Staff
  - HED Machine Learning
  - INFUSE
- Long Pulse
  - International: EAST (China)
  - Materials and Fusion Nuclear Science
- Discovery Plasma
  - Gen. Plasma Sci: Sheath, flux tube physics
  - Measurement Innovation
    - Quantum Calorimetry
    - High-Rep HEDLP Diags
  - HEDLP: Expts at JLF, NIF, SLAC/LCLS, LLE/OMEGA
    - FES Early Career (3 FY19, 4 FY20, 4 FY21)
    - LaserNetUS (experimental support)
  - QIS
  - Construction: ITER (1 FTE)





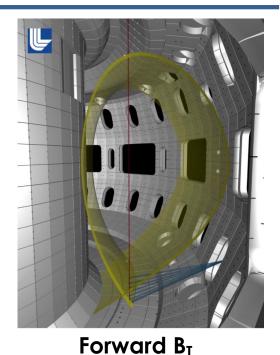


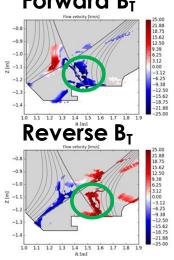

General


Atomics



PPPL


## LLNL at DIII-D is active in both Divertor Science and Advanced **Tokamak (Steady-state operation) Research**


- 1. Divertor Science: detachment / model validation / building design tools
  - EUV spectroscopy, Infrared imaging, divertor T<sub>i</sub>
  - UEDGE modeling, including plasma flow effects
  - Snowflake joint project: DIII-D, LLNL Theory, NSTX
- 2. Advanced Tokamak program and Scenario Development
  - Long-pulse Dynamics & Control
  - **Core measurements**
  - International Collaboration with EAST
- 3. Plasma Diagnostics designs and lends operational support:
  - LLNL leads routine operation of many critical diagnostic systems
  - Example: Building continuous absolutely-calibrated capability from IR to EUV

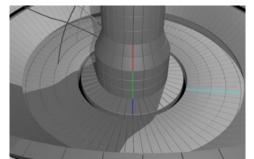


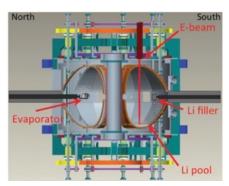
#### 4. Collaboration with Universities

- Tungsten Source Rates
- Flow vs. B<sub>Tor</sub> polarity in SOL and divertor via Coherence Imaging diagnostic








## LLNL Experimental Research at PPPL is focused on Spherical Tokamak Program: LTX, MAST-U, and NSTX-U Recovery/Physics Planning

- **1. Boundary Physics Research on Spherical Tokamaks** 
  - Lithium Tokamak Experiment (LTX)-beta
    - SOL turbulence
    - PFC studies, Lithium sputtering measurements
  - Mega-Ampere Spherical Tokamak Upgrade (MAST-U) in the U.K.
    - Fielding Diagnostics
    - First physics campaign started 5/2021
    - Divertor detachment and snowflake divertor studies
- 2. NSTX-U collaboration research
  - NSTX-U Program activities, Research Objective Leadership
  - Developing preliminary concepts for PFC monitoring system
  - Contributions to machine, PFC and diagnostic design, engineering, and assessment

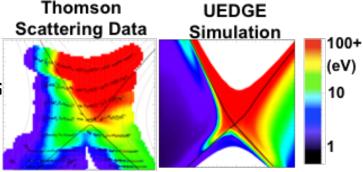
Conceptual view of PFC monitoring system viewing NSTX-U divertor





Lithium Tokamak eXperiment Beta in Princeton Plasma Physics Laboratory, Princeton, New Jersey




Mega-Ampere Spherical Tokamak Upgrade in Culham Centre for Fusion Energy, Culham, United Kingdom





## LLNL/FESP's Theory, Modeling, SciDAC research focuses on tokamak edge physics and integrated modeling/MHD

- Mission: Advance theoretical understanding and predictability of fusion plasmas
  - Two main research focus areas: Edge Physics and Integrated Modeling
- We pursue innovation in areas such as:
  - advanced divertor design and operation
  - understanding, control, and mitigation of instabilities
  - predictive and whole device modeling
  - advanced algorithm development
  - advanced computing through SciDAC, exascale, and QIS other initiatives
- <u>We prioritize research with strong connections to experimental physics:</u>
  - Provide theoretical support for planning, analysis and modeling of experiments on DIII-D, NSTX-U, MAST, EAST, KSTAR, ..., and many others
  - Provide scenario development tools for ITER and CFETR
- Efforts are strengthened by connections to NNSA and SC computational mathematics:
  - LLNL Center for Applied Scientific Computing (CASC)
  - LBNL Applied Numerical Algorithms Group (ANAG)





## **International collaborations with China and South Korea are a part of** reciprocal relationships

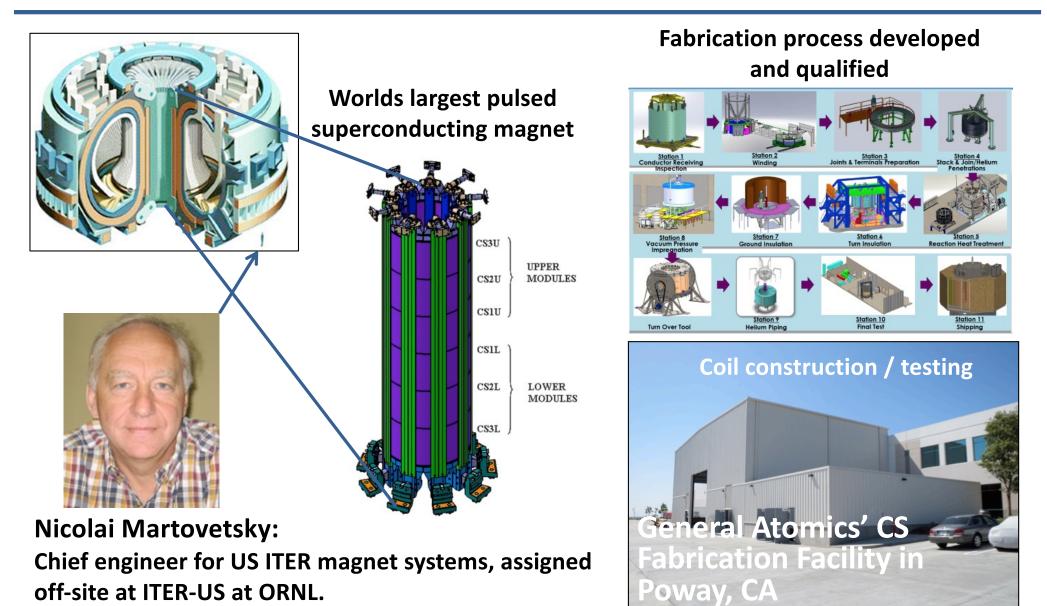
## FESP Staff "go" to China several times a year

- Whole device modeling
- Advanced Tokamak experiments and remote control

## FESP host at LLNL 4-6 Chinese faculty, post-docs, and students

- Plasma-edge physics
- Boundary-turbulence modeling
- Yearly BOUT++ Workshop
- LLNL hosted US-PRC MFE Workshop in Spring 2021




U.S.- and China-based magnetic fusion scientists in the control room of the DIII-D tokamak in San Diego







## FESP staff at ORNL: R&D for design, fabrication, and testing of ITER Central Solenoid, now includes HTSC work on SNS-STS and for CFS

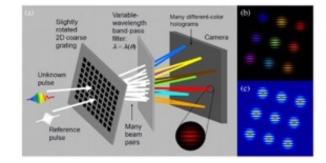


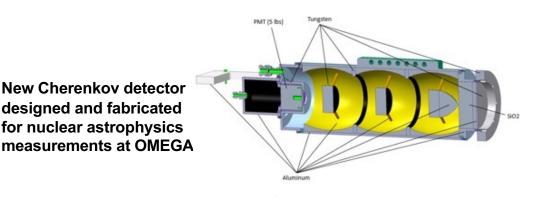


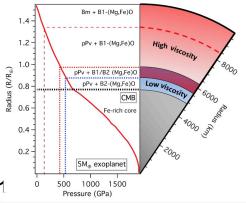
## **Discovery Science/HEDLP: enhanced by FES-ECRP awards**

#### ECRP 1 (Ma): Multi-ps Short-Pulse Laser-Driven Particle Acceleration for Novel HED & **ICF Applications**

Goal: Explore the scaling physics of electron, proton, and light ion generation in multi-ps short pulse laser parameter space using an integrated experimental and modeling approach


#### ECRP 2 (Zylstra): Studying nuclear astrophysics with inertial fusion implosions


Goal: Improve our understanding of how the elements were produced by nucleosynthesis processes in the universe by studying nuclear reactions in analogous laboratory plasmas.


#### ECRP 3 (Coppari): Expanding Capabilities to Unlock the Mysteries of Complex Warm Dense Matter

Goal: Characterize the properties of complex warm dense matter at the atomic level elucidating mixing and pathways to phase transitions to improve models describing planetary interiors

**STRIPED FISH diagnostic** for complete spatiotemporal singleshot measurement of high-intensity lasers.









New Cherenkov detector designed and fabricated

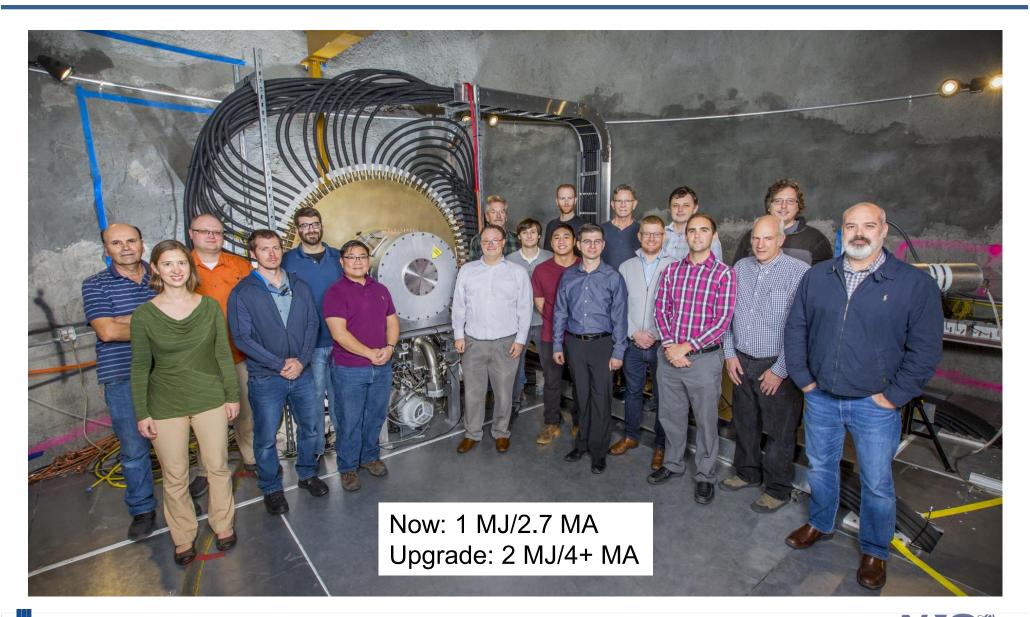
for nuclear astrophysics

Coppari et al, Nature Geoscience 14, 121 (2021



## **Discovery Science/HEDLP: LaserNetUS User Support**

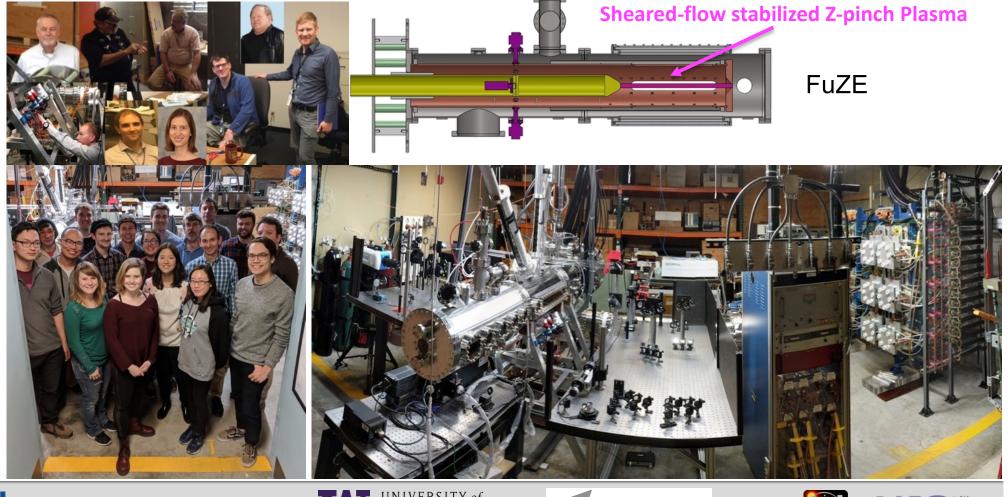
**Objective:** Support sub-awards to users allocated beam time through the proposal review panel (PRP). Funding is applied toward travel and procured materials/supplies/services as approved by the FES Program Manager




#### By the Numbers:

- Number of experiments supported: 29 of the 81 awarded proposals over 3 cycles (in progress; expect ~8 more to request support)
- Travel for teams: 11
- Target builds: 20 experiments
- Capability enhancement for facilities: BELLA, OSU, TPW, CSU
  - -Long focal length beamline (CSU & OSU)
  - -Engineering & parts to increase shot rate (TPW, CSU)
  - -Betatron source (BELLA)




## <u>Pulsed Power Fusion Group</u> operates <u>Mjolnir</u>, a <u>multi-MJ DPF</u> in the NOVA Laser Facility building for National Security Missions





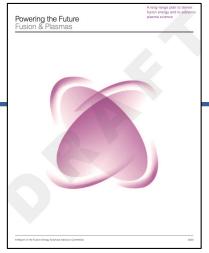
# **ARPA-E:** Experimental, diagnostic, and computational efforts have grown beyond FuZE sheared-flow stabilized Z-pinch concept to include multiple projects

- 2015 University of Washington / LLNL partnership initiated for FuZE Project (ALPHA)
- 2019: Neutron Production/Spectroscopy and Portable Thomson Scattering (Fusion Diagnostics)
- 2020 HTSC CS for CFS, Tungsten Additive Manufacturing, (BETHE, GAMOW/FES)










## **Overall LLNL FESP Outlook for 2022 and beyond for all sponsors is being guided by the new FESAC Report**

- Continue MFE experimental and theoretical research:
  - National research (DIII-D, NSTX-U, LTX-β)
  - International research (MAST-U, EAST, KSTAR)
  - Preparations for ITER and the burning plasma era
  - Expand partnerships with ARPA-E and Private Industry
- Pursue advanced computing relevant to predictive whole-fusion-device modeling
  - Leverage partnerships within LLNL between FESP (SC-FES) and CASC (SC-ASCR)
  - Expand collaborations beyond LLNL with other SC-FES and SC-ASCR supported institutions
  - SciDAC Engagement, QIS explorations, machine learning
- Expand Fusion Materials and Technology Efforts
  - PFC model validation, advanced design studies to include liquid metals/liquid walls
  - Predictive modeling of material behavior (LLNL Material Science Division)
  - Additive manufacturing of tungsten (LLNL Material Science Division)
- Foster Discovery Plasma Science, HEDLP, IFE
  - Leverage NNSA facilities for SC-FES HEDLP experiments and modeling (ECRP's)
  - Astrophysical plasmas and Basic Plasma Science
  - Respond to user-needs on mid-scale facilities
  - Steward existing activities and foster new opportunities in LaserNetUS: LCLS (BES), JLF/NIF (NNSA), and BELLA Center (HEP)
  - <u>Re-initiate appropriate IFE activities as guided by 2020 FESAC Report and upcoming BRN</u>

#### Our Focus: Executing FES Programs and connecting FES to other LLNL Capabilities



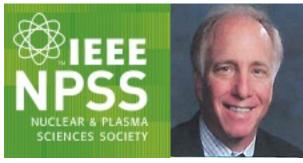


### Impact: LLNL Researchers have earned 9 DOE Office of Science Early Career Research Program Awards through FES





\*J. Marion left LLNL for UCLA in 2014, reducing his last 2 yrs to 150k/yr

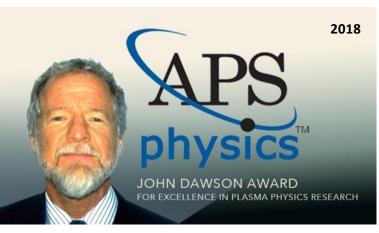

Each ECRP provides \$500k/yr x 5 Years. FES investment total of \$19.3M\*



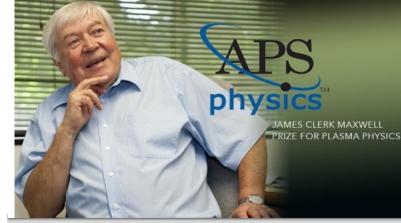
## **Recent Awards and Recognition**

#### **Alex Friedman**

**Dmitri Ryutov** 




Charles K. Birdsall Award for Contributions to Computational Nuclear and Plasma Sciences


#### **Chris Holcomb**



#### **Max Fenstermacher**



#### **Felicie Albert**











