

LaserNetUS: North America's First High Intensity Laser Research Network

Kramer U. Akli
HEDLP & QIS Program Manager
Fusion Energy Sciences,
DOE Office of Science

Fusion Power Associates Annual Meeting December 15-16, 2021

Advanced Beam Laboratory

Berkeley Lab Laser Accelerator (BELLA) Center

Jupiter Laser Facility
Contact:

Scarlet Laser Facility

Matter in Extreme Conditions

Center for Ultrafast Optical Science: HERCULES

Extreme Light Laboratory

Laboratory for Laser Energetics: OMEGA EP

Center for High Energy Density Science: Texas Petawatt Laser

Advanced Laser Light Source (ALLS

High Power and High Intensity Lasers are used to create and study HED Plasmas

Three types of lasers

1 Short Pulse High Intensity

2 Long Pulse High Energy

X-Ray Free-Electron
Laser

SLAC, LLNL and LLE are partnering to build the laser systems

High Repetition rate (HRR) Laser

- ▶ HRR petawatt laser: 1 PW, 10 Hz, 150J, 150 fs
 - ▶ Upgradable to up to 2 PW.
- HRR long pulse laser: 200J, 20 ns, 10 Hz, 0.527 μm

High Energy Laser

- High energy long-pulse laser: 1 kJ, 20 ns pulse-shaped,
 0.527 μm
- ▶ Upgradable to up to 5 kJ

Opportunities in Intense Ultrafast Lasers "Reaching for the Brightest Light"

Recommendations

- 1. DOE should create a broad national network (universities, industry, government labs) in coordination with OSTP, DOD, NSF, and others.
- 2. US research agencies should engage stakeholders to **define facilities and laser parameters** that will best serve research needs.
- **3. DOE should** lead development of **an interagency national strategy** for developing and operating large- and mid-scale projects and developing technology.
- 4. DOE should plan for at least one large-scale open-access, high-intensity laser facility that leverages other major science infrastructure in the DOE complex.
- 5. Agencies should create U.S. programs that include mid-scale infrastructure, project operations, development of technologies; and engagement in research at international facilities such as ELI.

LaserNetUS was established August 20th, 2018

Dedicated to the proposition that ALL research groups should have access to the brightest light

Network creates capabilities for science & applications

Office of Science

The physics enabled by high power lasers is central to FES and HEDS, but also to a broad range of disciplines and to societally relevant applications

LaserNetUS by the numbers

Office of Science

experiments performed

LaserNetUS encourages students to submit proposals

PPPL scientists create insight into perhaps the most extreme state of matter produced on Earth

Experiments were conducted at CSU

Solid-Density Ion Temperature from Redshifted and Double-Peaked Stark Line Shapes

B. F. Kraus et al., Phys. Rev. Lett. 127, 205001 (2021).

Tomographic imaging with an intense laserdriven gamma-ray source

- Higher resolution, directional source improves imaging
- High-value industrial applications, e.g. aerospace
- Global security: detect hidden nuclear material

Microtron 4x mag 15 MeV

CSU Laser 10 J, 50 fs, 5x mag

ABL Facility

Evaluating the radiobiological effects of laser- accelerated protons

- Investigate the FLASH effect for improved radiotherapy using laser accelerated protons.
- Ultra-high dose rates in in vitro cultures of normal human prostate cells and tumor derived cells studies.

Dynamics of mineral nutrient distribution at the cellular to whole-plant levels

Dynamics of mineral nutrient distribution and homeostasis, at the cellular to whole-plant levels

- Crop productivity and resiliency rely on the acquisition and distribution of mineral nutrients to both plant vegetative and reproductive organs
- The overall goal of this research is to establish the realtime changes in the translocation and distribution of mineral nutrient elements, at the cellular to wholeplant levels, under nutrient-limited conditions.
- X-ray absorption (XRA) platform based on laser Wakefield acceleration.

ALLS Facility

Effect of P levels in the nutrient solution on shoot growth in 4-week-old cucumber plants.

https://lasernetus.org/

- LaserNetUS new website and branding
- Complete rebuild to address SAB recommendation
- Focuses on helping users find the correct node for their research on all platforms.

Recent reports support LaserNetUS growth

Office of Science

"Expand the scope and capabilities of LaserNetUS"

"Improve and upgrade existing LaserNetUS facilities...."

"This is an opportune time to address [...] challenges, with increased access through LaserNetUS"

"Increase operations support and aggressive upgrades to the LaserNetUS network to expand the base of users while allowing for a diverse set of capabilities that maintain US competitiveness."

LaserNetUS organization chart

Office of Science

U.S. DEPARTMENT OF ENERGY, OFFICE OF FUSION ENERGY SCIENCES

MANAGEMENT ASERNETUS

CHAIR

For more details visit:

https://lasernetus.org/about

COMMITTEES LASERNETUS

CHAIR

CHAIR

NETWORK FACILITIES

Carry out experiments awarded by the PRP, implement SAB recommendations, strategic planning for the network

INTENSE-LIGHT USERS ENGAGEMENT (I-USE)

Represent user's interest within the network

DIAGNOSTICS

Prioritization of common diagnostics development by engaging both users and facilities

SIMULATIONS

Establish connections between investigators and the teams that build simulation codes

PROPOAL REVIEW PANEL

SCIENTIFIC ADVISORY BOARD

Conduct a fair and transparent review process for beamtime allocation.

LaserNetUS Website Google Analytics

Country ?	Users ? ↓
	14,423 % of Total: 100.00% (14,423)
1. Inited States	8,813 (61.15%)
2. United Kingdom	843 (5.85%)
3. China	770 (5.34%)
4.	437 (3.03%)
5. France	402 (2.79%)
6. Japan	331 (2.30%)
7. Germany	325 (2.26%)