

Progress of Fusion Nuclear Technology, Material and Safety Studies at FDS

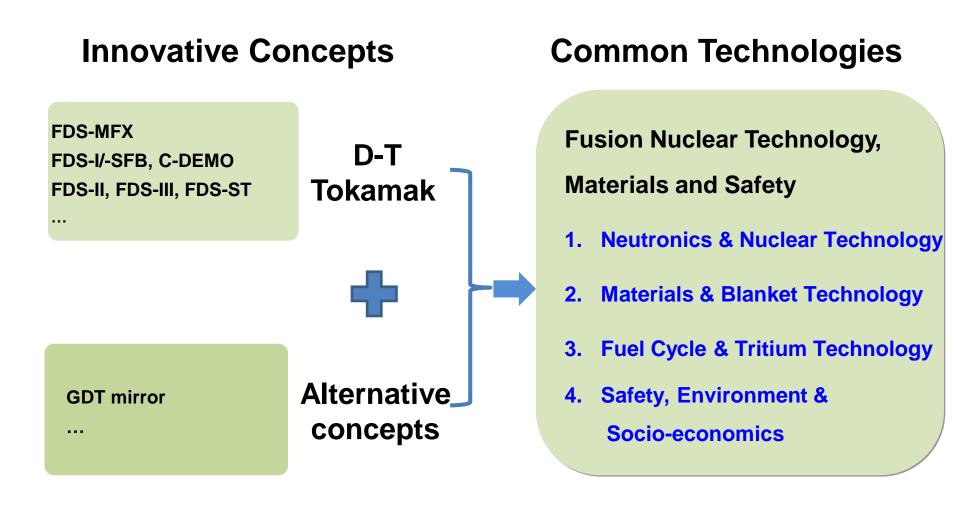
Yican WU, Minghuang WANG, Fang WANG, Liangliang SONG

Contributed by FDS Team Institute of Nuclear Energy Safety Technology (INEST) International Academy of Neutron Science (IANS)

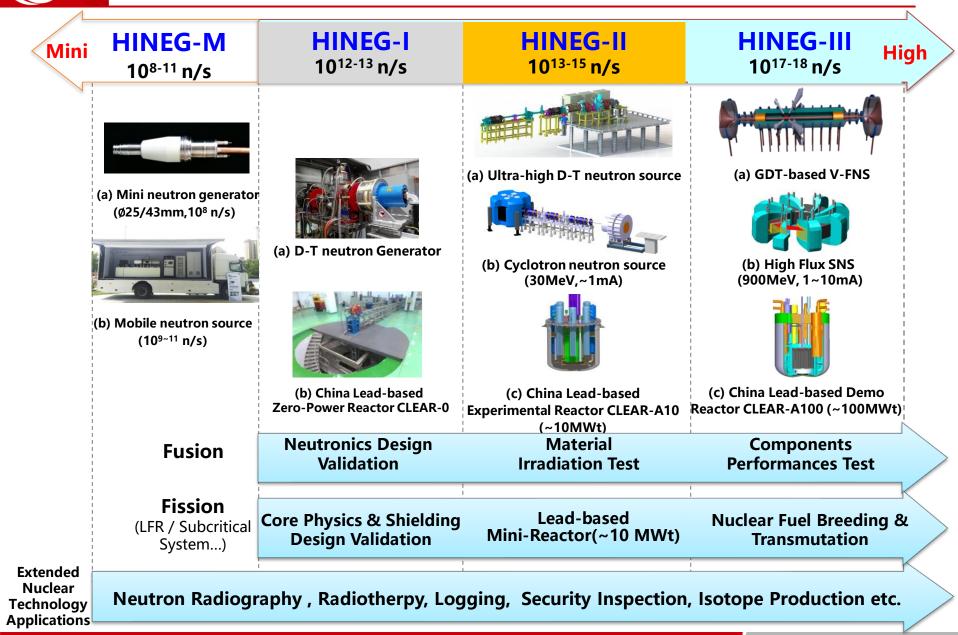
- In response to the latest requirements of the reform of national science & technology system, FDS has been upgraded to a new organizational form, becoming a large institution of science and technology group
- Thanks to its very competitive technologies and brilliant talent team, FDS is highly valued and strongly supported by national & local governments, as well as social groups.
- The scale of FDS is rapidly expanding, with a series of new bases under construction.

Qingdao

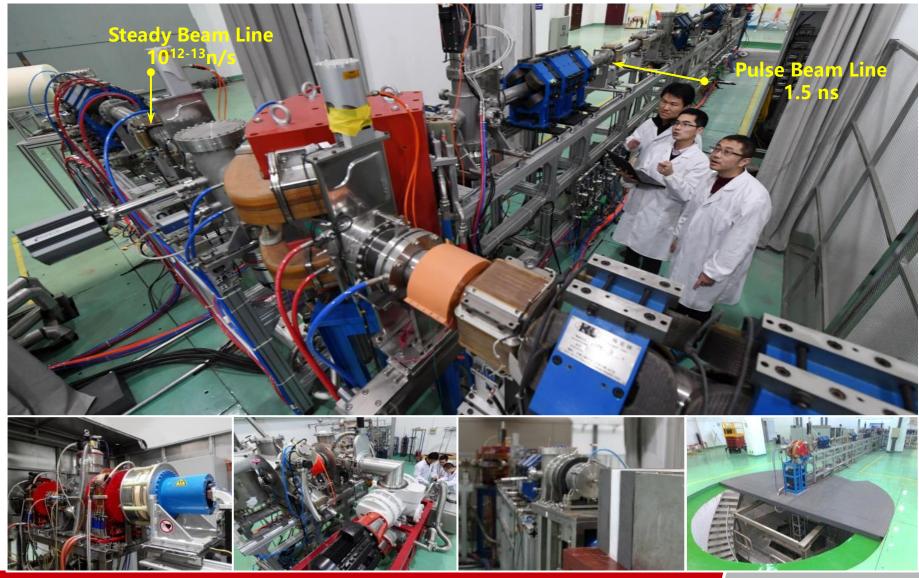
Hefei



Institute of SuperAccuracy Radiation Technology Co., Ltd. (ISART)


Nanjing

Orientation of Fusion Studies at FDS


Develop technologies shared among various fusion concepts

Snapshot of High Intensity Neutron Sources by FDS

FDS HINEG-I: D-T Fusion Neutron Generator (Ready)

Neutrons yield: 6.4×10¹² n/s, coupling with Lead-based zero power reactor CLEAR-0

□ Application Goals

- Radiation damage mechanism of materials under fusion neutron irradiation environment
- Validation and calibration of materials irradiation data obtained with other ion/neutron source (e.g. reactor, spallation)
- Extended nuclear technology applications including radiography, neutron therapy, etc.

□ Main parameters

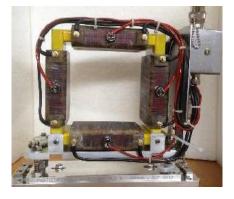
- Neutron yield: 10¹³-10¹⁴ n/s
- D-D and D-T dual operation mode

Construction are on going

Ion Source

Extraction system

Vacuum Vessel

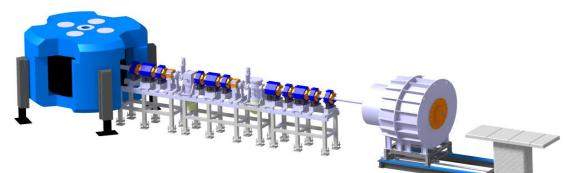

Insulating Transformer

HV Power Supply

Chiller

Steerer

C&C Cabinet


Engineering design has been finished, components manufacture and assembly are under going

□ Application Goals


- Neutron source for **boron neutron capture therapy**
- Validation of **isotope production** technology based accelerator
- Validation of accelerator & target technologies for subcritical system
- Fundamental science and neutron irradiation research platform

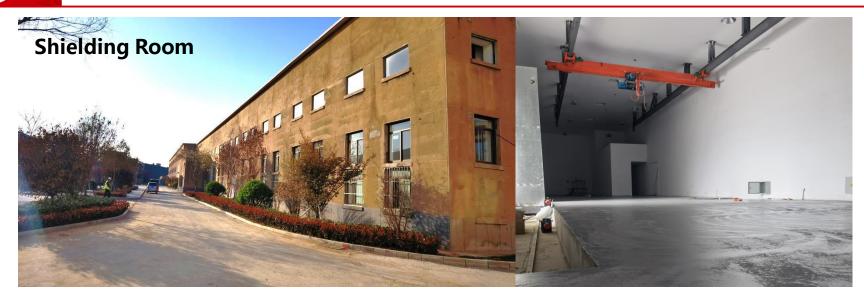
Main parameters

- Neutron yield: >10¹⁴ n/s
- Accelerator: proton, 30 MeV/1 mA
- Target material: Be
- CW operation

Progress of HINEG-IIb

Cyclotron

RF Syetem

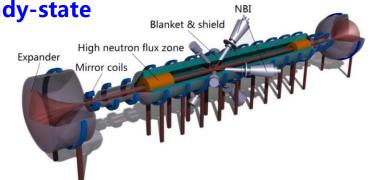

Ion Source

Components manufacture are under going Assembly will start at early 2022

HV Power Supply

Buildings for HINEG-II Facilities

Shielding room and supporting laboratories almost ready in Qingdao Base


HINEG-IIIa: High Flux GDT based VFNS (Planning)

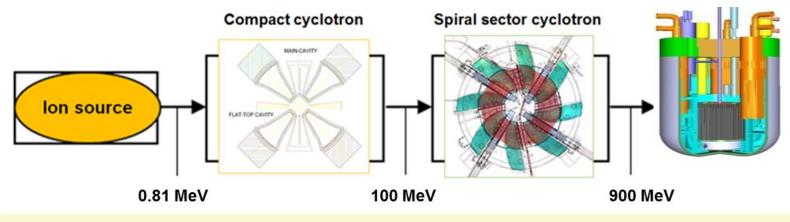
□ Application Goals

- Full lifetime irradiation test of fusion materials (≥20 dpa/FPY)
- Component test of blanket and divertor
- Reliability data of nuclear components
- Validation of radioactive waste transmutation

Main Parameters

- Neutron yield: ≥10¹⁸ n/s, volumetric, steady-state
- Tritium consumption rate: <200 g/FPY
- Neutron flux and test volume:
 - \geq 2 MW/m² (~35 L)
 - \geq 1 MW/m² (~100 L)
 - $\geq 0.5 \text{ MW/m}^2 (\sim 1 \text{ m}^3)$

- Linear, simple and compact structures
- Relative low demand of technologies


Based on HINEG-IIIa, an international mega-science project proposal titled "Axisymmetric Linear Advanced Neutron sourCE (ALIANCE)" was jointly initiated by FDS & BINP in 2018

□ Application Goals

- Driver of a multi-purpose subcritical nuclear system (China Leadbased Demo Reactor CLEAR-A100).
- Multi-purpose and flexible fast neutron irradiation platform

Main Parameters

- Neutron yield: 10¹⁷⁻¹⁸ n/s
- Accelerator: 900MeV/1-10mA proton beam
- Spallation Target: Pb

Conceptual design of HINEG-IIIb are on going

Structural Materials and Test Blanket Modular

I. CLAM: China Low Activation Martensitic steel

- 3×6-ton Ingots & Components
- Breakthrough in 3D printing of blanket first wall

National RAFM steel standard is published (GB/T 38820-2020)

II. ODS-CLAM: Oxide Dispersion-Strengthened CLAM

- Nanoparticles: <10 nm, >10²⁴ m-3
- Yield strength at 700 °C: >500 MPa
- Creep life at 120 MPa/650°C: >10,000 hr
- Swelling after 200 dpa ion irradiation: <0.1%</p>

Supported by National Key Technology R&D Project of China

III. China TBM Program

Fabrication of 1/3 scaled DFLL-TBM by welding technologies

- 1. Identification of Safety Gaps analysis for Fusion DEMO Reactors and published in Journal of Nature Energy.
- 2. Organized and hosted two international workshops on ESEFP to promote research on fusion safety assessment and regulatory, such as safety approach, safety design, licensing, et al.
- 3. Fusion System Analysis and Economical Assessment Program(SYSCODE) was developed. SYSCODE was selected as the highlight of 2015 by IEA.

- 1. In response to the latest requirements of the reform of national science & technology system, FDS has been upgraded to a new organizational & institutional form.
- 2. The scale of FDS is rapidly expanding which supported by national & local governments, as well as social groups, and three major new bases are under construction, we welcome international collaboration & communication in Qingdao, Hefei, Nanjing and other places.
- 3. Common fusion technologies of neutron sources, materials, and safety have been developed continuously, especially the several new neutron source facilities under construction recently.

Thanks for Your Attention ?

Website: www.fds.org.cn E-mail: contact@fds.org.cn

