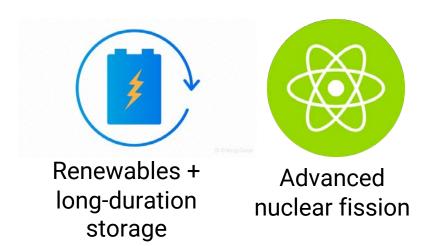


ARPA-E Fusion Overview and Perspectives

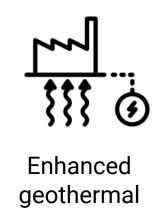
Scott C. Hsu, Program Director, ARPA-E
Acknowledgments: Sam Wurzel (T2M Advisor) and Colleen Nehl (Tech. SETA)

Fusion Power Associates 42nd Annual Meeting Pathways to Fusion Power

December 15, 2021



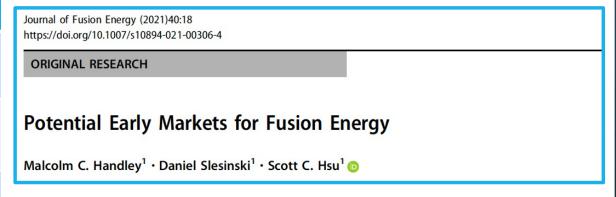
OVERVIEW OF ARPA-E FUSION PROGRAMS




Framing of fusion energy within ARPA-E's portfolio

World needs >500 EJ/year of sustainable, carbon-neutral primary energy

Fusion is needed risk mitigation ≤2050 and Plan A ≥2050.


As with all ARPA-E programs, our fusion programs are guided by market-aware, techno-economic metrics

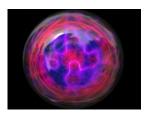
Aspirational economic targets

Item	Cost target
Overnight capital cost (~tenth-of-a-kind)	~\$2B, <\$5/W
LCOE	Initially < \$75/MWh Longer-term < \$50/MWh
"wall-plug gain" experiment	<\$1B, <<\$1B even better

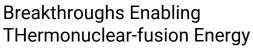
Capex based on reports examining economics of nuclear advanced reactors.

LCOE based on ARPA-E tech-to-market (T2M) study:

https://doi.org/10.1007/s10894-021-00306-4



ARPA-E fusion timeline/programs (total of ~\$120M†)


Dr. Patrick McGrath decides to pursue a fusion program

Dr. Scott Hsu joins ARPA-E (Nov. 2018)

Stay tuned!

2013

2015

2018

2019

2020

2021

*Accelerating Low-Cost Plasma Heating and Assembly Retrospective: https://doi.org/10.1007/s10894-019- 00226-4

OPEN 2018

Included 3 fusion projects **Diagnostic** "capability teams"

joint with SC/FES

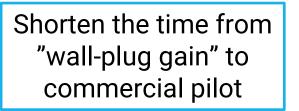
Galvanizing Advances in Market-aligned fusion for an Overabundance of Watts

Philosophy/vision of the BETHE (2020–2023) and GAMOW (2021–2024) programs

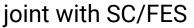
Objective: catalyze R&D trajectory toward timely commercial fusion energy.

Technical drivers

More low-cost approaches at higher levels of fusion performance

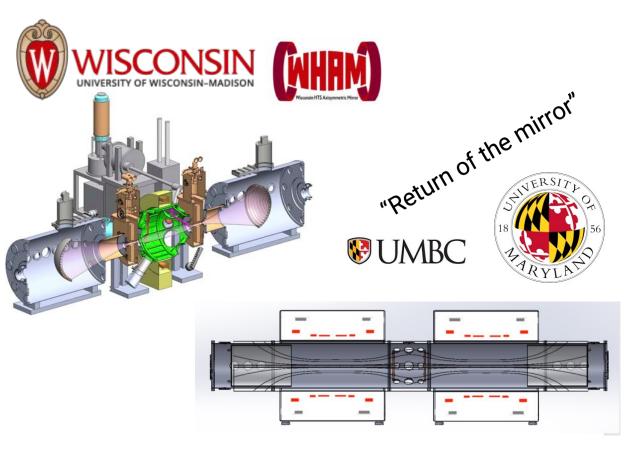

+ "capability teams"

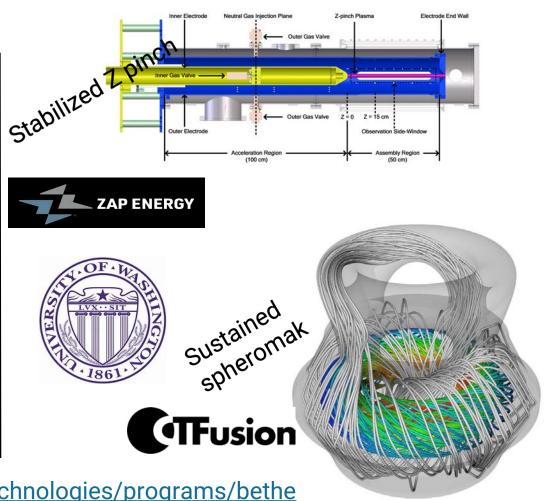
Programmatic drivers


Engage larger portion of the fusion R&D community

Leverage SotA expertise/capabilities

Incentivize publicly and privately funded teams to work together

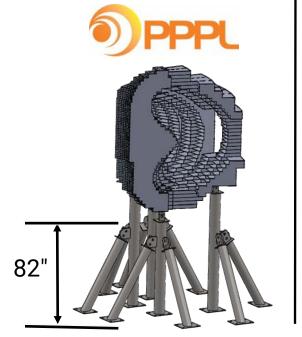




Subset of BETHE category A: advance the performance of lower-cost concepts

- ► Enable 2–3 lower-cost concepts to reach $T_e, T_i \ge 1$ keV for first time
- ▶ Bring one concept to $nT\tau_E \ge 10^{18} \text{ keV} \cdot \text{s/m}^3$

https://arpa-e.energy.gov/technologies/programs/bethe


Subset of BETHE category B: lower the cost of more-mature concepts

- Exploit new enabling technologies
- Enable eventual overnight capital cost <\$2B, <\$5/W</p>

Inertial fusion energy (IFE) "subprogram"

Next-gen laser development (high-efficiency & bandwidth)

IFE-relevant high-gain target designs

jointly funded with SC/FES

Diagnostic "capability teams" (mini-program: 2019–2022) have deployed to experiments around the country

BETHE category C included computational capability teams

ORNL team bringing their diagnostic to the Princeton FRC (Princeton Fusion Systems and PPPL).

LANL and LLNL diagnostics installed on the FuZE device (Zap Energy).

GAMOW program: Accelerate R&D in fusion materials and enabling technologies to support commercially viable fusion concepts

Deployable in experiments well within a decade

Device simplification or elimination of entire subsystems

Significant cost reduction

Improvements in RAMI, safety, sustainability

Joint program with SC/FES Li-containing **Blanket** Superconducting magnets and/or structural vessel Refueling Neutrons First wall (including PFC/Divertor) Exhaust Sea water pumping and Deuterium Tritium separation extractor extractor

>900-K blanket operation

HTS tape <\$10/kA-m, substrate >3 GPa

<1000-Ci (100-mg) T annual release

>10-MW/m² continuous power handling at 1st wall

GAMOW

<0.75-kG T inventory for 500-MW_{th} system

GAMOW portfolio: 14 projects across 7 technical categories

Goals: Reduce fusion energy system cost by enabling device simplification or elimination of entire subsystems; improve development time and cost; improve safety and sustainability of fusion energy systems and reduce the need for specialized testing/qualification facilities.

Office of

Joint program with SC/FES

Integrated first-wall and blanket modeling (ORNL)

Innovative PFC/divertor solutions (ORNL, UCLA)

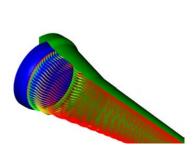
Tritium extraction, pumping (SRNLx2, Colorado School of Mines)

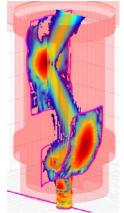
Advanced HTS (Univ. of Houston)

Novel fusion materials, advanced manufacturing, testing (ORNLx2, Phoenix/Shine, Stony Brook Univ., PNNL)

High-efficiency electricaldriver systems (Princeton Fusion Systems, Bridge 12)

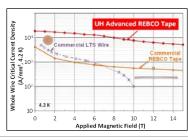
Prime recipients: 5 universities, 3 private companies, 6 national labs; click here for full list of project teams. GAMOW kickoff meeting (virtual), Jan. 21-22, 2021.




GAMOW theme: enabling technologies (subset of projects)

Bridge12 Technologies, Inc.

1-MW, 230-GHz gyrotron for plasma heating and instability control



University of Houston

Advanced HTS Conductors Customized for Fusion

Advanced Metal Organic Chemical Vapor Deposition for 5 µm thick films

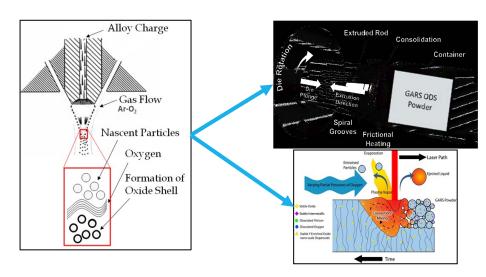
UH REBCO tapes with 5x critical current (I,) of commercial tapes

Double-sided 5 µm thick films with 10x I, and 7x precursor-to-film conversion efficiency

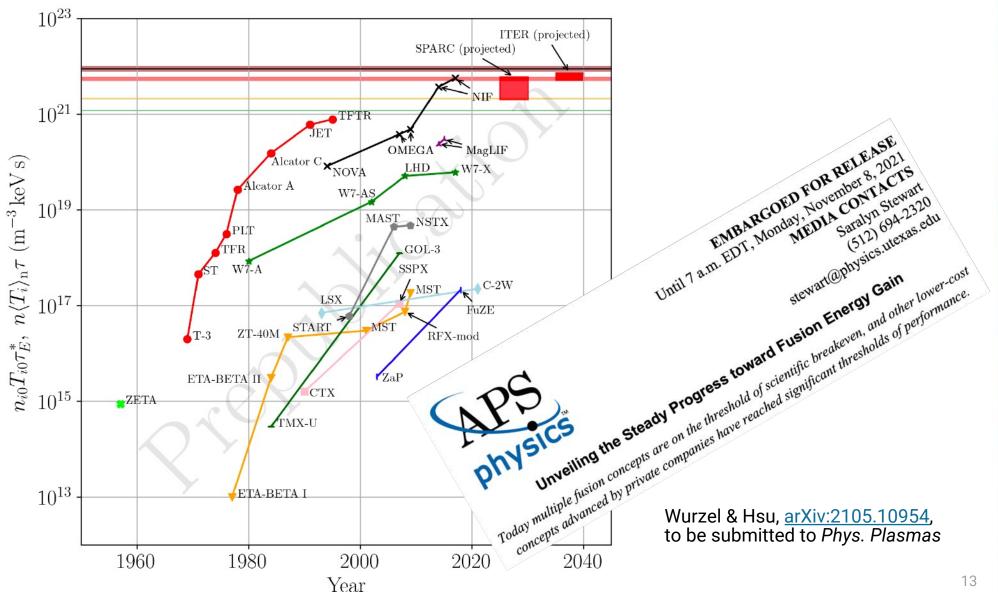
In-line Quality Control in Advanced MOCVD for highyield manufacturing

Example GAMOW theme: cross-cutting materials R&D (subset of projects)

Phoenix, LLC, a division of SHINE


Application of Plasma-Window Technology to Enable an Ultra High-Flux DT Neutron Source

Pacific Northwest National Laboratory


Microstructure Optimization and Novel Processing Development of Oxide-Dispersion-Strengthened Steels for Fusion

Tech-to-Market (T2M): investor engagement

Tech-to-Market (T2M): anticipating the importance of social acceptance

Response to request-for-information (2019):

Post Road Foundation

1999 Harrison St., Suite 1800, Oakland, CA 94612 | 510-859-8575 | www.postroadfoundation.org

June 4, 2019

RE: Response for Enabling Technologies for a Commercially Viable Fusion Power Plant, DE-FOA-0002131

To Whom It May Concern:

Thank you for the opportunity to provide input on ARPA-E's fusion R&D program.

I am the Chief Operating & Science Officer of a small non-profit, The Post Road to help communities build sustainable infrastructure. I am trained as both physicist (Princeton Ph.D., 2003) and an environmental law attorney (Harv specialization in energy law and policy. In addition to running Post Road, I focused research on nuclear-related issues, such as the means by which new nu secure a social license. Note that the views expressed herein are my own and are the Post Road Foundation

My response pertains to question 6, "Other ideas and suggestions"

Upcoming meetings

- ARPA-E fusion portfolio-wide annual meeting
 - Aiming for in-person/hybrid, Apr. 26–28, 2022, near San Francisco, CA
 - Technical updates from 40+ projects (OPEN 2018, Diagnostic capability teams, BETHE, GAMOW)
 - T2M topics/mini-sessions on PPPs and social license
- ARPA-E Energy Innovation Summit
 - In-person, Mar. 14–16, 2022, Denver, CO

PERSPECTIVES

Fusion R&D landscape is changing rapidly

S&T advances in the FES program

Growth of private-sector fusion investment

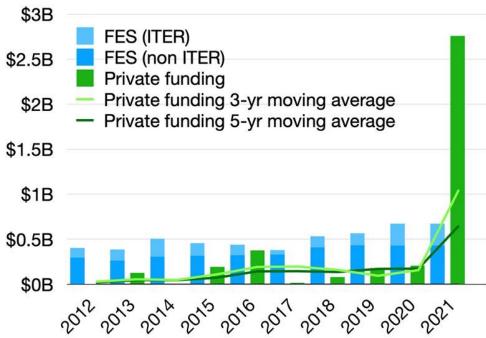
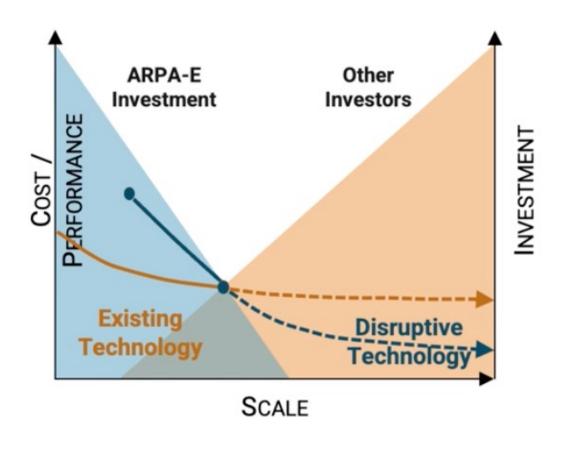


Figure credit: Sam Wurzel, ARPA-E fusion T2M Advisor, compiled from public sources

We know what we need to do

- Fusion development including PPPs* as recommended by <u>NASEM Bringing</u>
 Fusion to the U.S. Grid
 - Needs further definition and broad stakeholder engagement (public and private sectors)
- Fusion R&D activities authorized in <u>Energy Act of 2020</u> (enacted 12/28/20)
 - Augmented in pending Build Back Better Act <u>HR 5376</u>
- FESAC LRP unconstrained scenario
 - based on <u>Community Planning Process report</u> (also <u>multiple reports</u> over the past decade, and upcoming IFE workshop)

Different public-private-partnership models can potentially accelerate R&D and ensure commercial alignment up to FOAK


Development stage	Objectives	Possible program mechanisms
Foundational R&D (broad in scope)	Build underpinning science and tools; advance fusion concepts to threshold level of performance	Largely federal grants and cooperative agreements
Earlier-stage R&D needs driven by industry	Provide access to federally funded expertise, capabilities, and/or facilities	Voucher program, e.g., <u>INFUSE</u> and industry FOAs, e.g., the <u>one</u> from NE, ARPA-E-like " <u>capability teams</u> ," NE <u>NRIC</u> -like
Proof of concept through net gain	Increase plasma performance toward achieving net energy gain in concepts with commercial interest/backing	Cost-share programs, e.g., NE <u>ARDP</u> & <u>NRIC</u> -like, ARPA-E <u>SCALEUP</u> -like
Reactor materials, subsystems, and engineering	Develop, test, and qualify high-duty-cycle driver systems, reactor materials/components, and fuel-cycle technologies	Industrial partnerships, e.g., recent Eni/ENEA partnership to build a Divertor Test Tokamak, NASA/COTS -like, NE ARDP & VTR-like , ARPA- ARPA-like ESCALEUP -like
Pre-commercial pilot plant	Fully test and qualify integrated operation of all subcomponents and close all remaining technical and licensing gaps (i.e., the first grid-ready prototype)	Major industrial partnerships, e.g., NASA/COTS-like, DOE/NE ARDP & VTR-like, DOE Clean Energy Demonstrations, LPO
First-of-a-kind commercial demonstration (FOAK)	First commercial system selling electricity on the grid	Financed by combination of industrial companies, utilities, private investments, and/or federal loans (LPO)

Many resources light the path forward, e.g., (1) DOE/NE <u>Advanced Demonstration and Test Reactor Options Study</u> (2017), (2) NGO studies such as Rozansky & Hart, <u>More and better: Building and Managing a Federal Energy Demonstration Portfolio</u>, ITIF (2020) and <u>Where Good Technologies Come From</u>, Breakthrough Institute (2010), (3) academic studies such as <u>D. Hart, Energy Policy</u> **119**, 367 (2018).

ARPA-E <u>SCALEUP</u> program contains relevant elements that could be applicable for new fusion PPPs

Overcoming scale-up valley of death

- Includes development ("scale-up and pre-pilot") and demonstration activities
- Applicant IP-ownership requirements
- Commercialization partnerships and private cost share required
- Oral interviews (team assessment)

Tri-agency (ARPA-E, DOD, NASA) workshop on compact fusion (April 28, 2021) reveals grassroot interest in multi-agency collaboration

SIZING UP COMPACT FUSION'S POTENTIAL

The Aerospace Corporation hosted a workshop to convene ARPA-E, NASA, DARPA, DIU and members of the commercial fusion sector to discuss technical requirements for compact fusion capabilities and prototypes in development.

Many potential future ARPA-E fusion R&D programs waiting to be pitched by YOU!

- Enabling fusion with advanced fuels (i.e., aneutronic)
- Accelerating laser and target-manufacturing R&D for IFE
- Everything other than Q_{plasma} in the equation for engineering gain (e.g., energy recovery, input/conversion efficiencies, etc.)
- Revolutionary materials for fusion
- Novel blanket and first-wall concepts
- Enabling co-generation applications of fusion (and coal retrofits)

•

https://arpa-e.energy.gov/career/job-opportunities

https://arpa-e.energy.gov

