

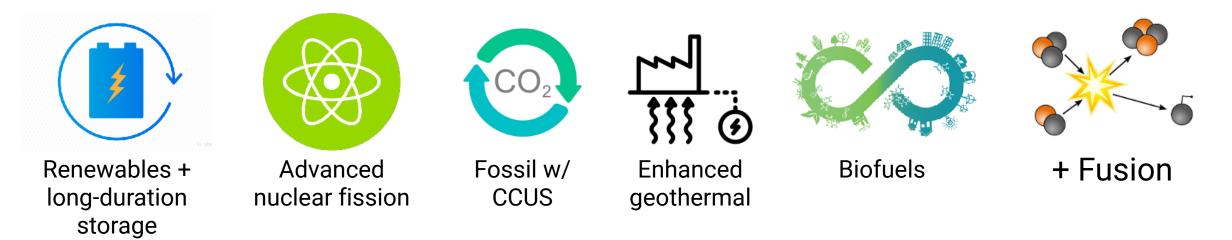
### **Role of ARPA-E in Accelerating Fusion Energy**

Ahmed Diallo, Program Director, ARPA-E

43<sup>rd</sup> Annual Meeting and Symposium: The Road Ahead December 7-8, 2022 Washington, DC

### **ARPA-E** Mission

**Goal 1:** To enhance the economic and energy security of the U.S. through the development of energy technologies that—




**Goal 2:** To ensure that the U.S. maintains a technological lead in developing and deploying advanced energy technologies.

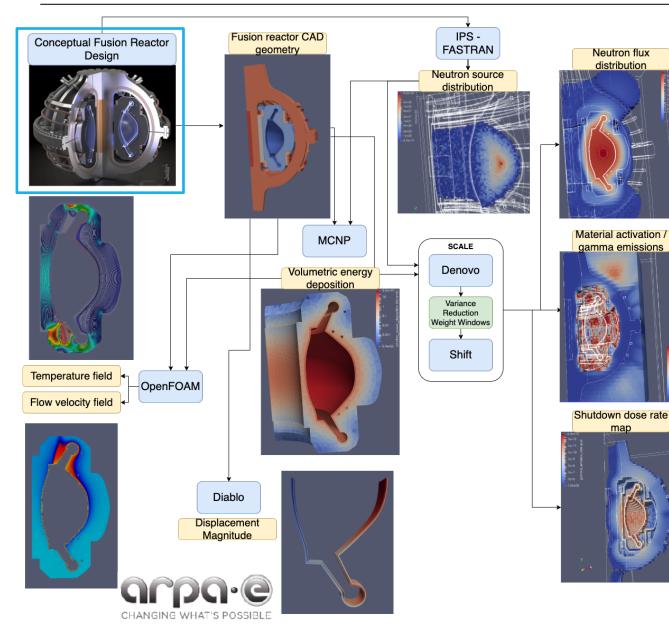


## Framing of fusion energy within ARPA-E's portfolio

- Fusion samples the highest-risk and highest-impact end of ARPA-E's portfolio, with potential to be:
  - A safe, abundant, firm, zero-carbon-emitting source of primary energy, electricity, heat
  - Dispatchable
  - Sited near population centers
- ► ≤ 2050: Enable fusion as a risk-mitigation option for meeting net-zero targets



Beyond 2050: Fusion energy could provide sustainable flexibility for zero-carbon energy




## **ARPA-E impact on commercial fusion R&D**

- ARPA-E's fusion programs helped forge a dramatically changed fusion R&D landscape over the past 7 years
  - \$780M (and growing) of private funding as a result of ARPA-E fusion awards
  - Focus on capital cost and projected levelized cost of electricity (LCOE)
- New (MIF) and renewed (MFE/IFE) investigations of promising fusion concepts
  - Enabling materials & technologies R&D focused on multiple, commercially oriented concepts
- From one (ITER) to multiple development paths (CFS, CTFusion, Helion, HyperJet, Realta, Type One, Zap, etc.)
  - 6 new fusion companies from ARPA-E programs so far
- Broad engagement with commercialization stakeholders



## Fusion Energy Reactor Models Integrator (FERMI)



#### PI: Vittorio Badalassi

Team: ORNL, LLNL, CFS, MIT, Hypercomp, NVidia ARPA-E GAMOW Award

#### **Technology Summary**

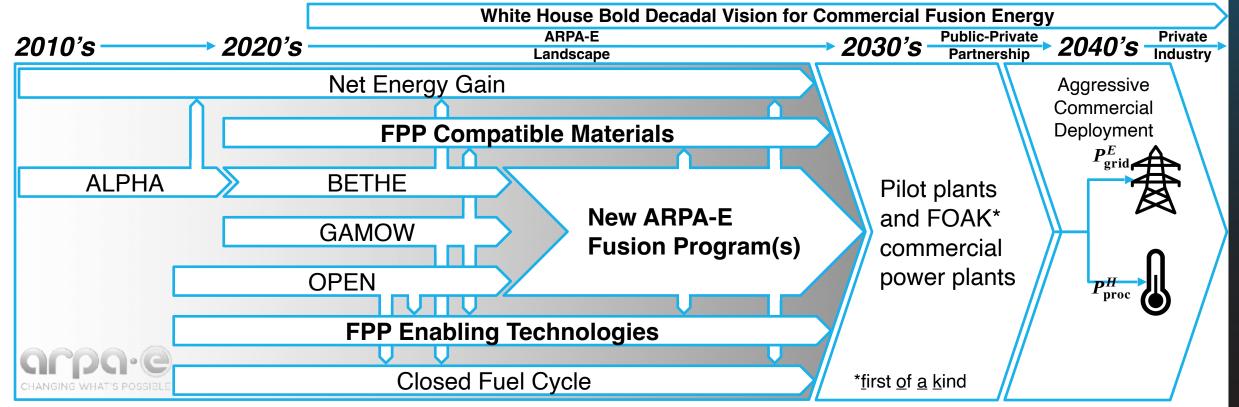
- Development of a virtual reactor
- Integrated plasma physics, PMI, shielding, structural/thermal, MHD, fluids, UQ models
- Validation on available data and results

#### **Technology Impact**

- Speeds up the overall design development by 30 times
- · Exceptional fidelity of the engineering calculations
- Enables the development of a commercial fusion reactor

#### **Proposed Targets**

| Metric                                                    | State of the Art                 | Proposed                                |
|-----------------------------------------------------------|----------------------------------|-----------------------------------------|
| Coupled Multiphysics First<br>Wall and Blanket Simulation | No existing<br>capability        | FERMI integrated simulation environment |
| FliBe cooled/breed FW & Blanket Proof of Concept          | TRL = 3                          | TRL = 6                                 |
| Conceptual Design time                                    | 9 Years                          | 3 months                                |
| Design team number and<br>design iterations               | 20 engineers and 3<br>iterations | 3 engineers and 6<br>iterations         |


## What is needed for a fusion power plant (FPP)

#### Net energy gain

- A high-performance plasma is at the center of any potential FPP
- FPP compatible materials
  - Robust materials are essential, needing a dedicated and FPP relevant neutron source for validation and development

#### FPP enabling technologies

- Increase attractiveness of FPPs by increasing plant efficiency and availability, reducing the cost and operational complexity
- Closed fuel cycle
  - Tritium self-sufficiency is a key requirement for the first commercial FPPs
- White House bold decadal vision will lay groundwork for commercialization, including energy justice



## Vision for next ARPA-E fusion programs should leverage...

### Surge in private investment in fusion energy

- Emphasizes near-term success/ROI with higher risk and multiple concepts

### Technological advances in fusion subsystems (e.g., drivers, heating)

- Push for compactness presents new/different challenges
- New technologies (simplified maintenance schemes) and design methodology (disposable core internals) may alter requirements and increase performance

### Advances in the materials science towards fusion

- Advances in theory, computation, and modeling capabilities (including AI/ML) and material synthesis offer opportunities for accelerated material discovery

### Advances in testing, irradiation (ion beam, proton, fission) and characterization capabilities



# Enabling technologies for improving fusion power plant performance and availability

RFI closed on November 28th

#### Low-cost commercial fusion energy

Improving performance with innovative heating schemes and high-performance targets

Advanced driver technologies and target-driver architectures

Microwave heating (e.g., high-power, long-pulse microwave sources with electrical efficiency  $\geq$  55%)

Neutral particle beam heating challenges (e.g., novel neutral beam approaches; negative ion beam system with electrical efficiency > 60%)

Low-cost scalable high rep-rate laser drivers for inertial fusion
Reproducible target design and delivery systems at few Hz

 Optics technology with higher damage threshold tolerance to optics damage (gas optics, etc.)



#### Increasing FPP availability through accelerated discovery of novel fusion materials

Materials "by design" for plasma facing components and for enabling high-throughput tritium handling

Solid & self-healing materials with the following features

minimize half-lives of materials

reduce dust formation

• minimize fuel retention (e.g., hydrogen)

- minimize the displacement per atom due to neutron irradiations
- high heat resistant (> 600 C)
- corrosion resistant

## **RFI responses are being processed**

- Many good responses with novel ideas and insights on next generation fusion materials and enabling technologies
  - 46 responses received (2 15 pages each) in a 5-week timeframe
- Stay tuned for possible workshop and next steps

Breakdown of Respondents:



## **THANKS!**

ahmed.diallo@hq.doe.gov

