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Power flow in 425 MWe ArF power plant
0.65 MJ ArF laser operating @ 10 pulses/sec.  

Flow of discussion for this presentation of NRL technologies
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More than a decade ago NRL already had these excimer technologies in hand 
in terms of reproducibility, reliability, rep-rate, cost and moderate durability
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KrF Laser Development for Fusion Energy, M.F. Wolford, J.D. Sethian, M.C. Myers, F. Hegeler, J.L. Giuliani, S.P. Obenschain, Plasma And Fusion 
Research Vol. 8, Issue SPL.ISS.2, 3404044 (2013). https://www.jstage.jst.go.jp/article/pfr/8/0/8_3404044/_pdf/-char/en
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Now: The NRL Electra electron-beam-pumped system is  advancing the 
S&T of the high-energy ArF  laser

• Converted to ArF to advance basic electron-beam 
pumped ArF S&T

• World record ArF energy (200J) 

• 11 THz FWHM bandwidth observed from Electra 
(single pass ASE output)

• ArF’s short wavelength and broad bandwidth 
mitigate laser plasma instability. 

• 10% “wallplug”  efficiency expected  

NRL Electra Facility 

Pulse lineArF gas cell



We are building robust, efficient electron beam diodes to pump the ArF
laser to enhance capability for excimer laser inertial fusion energy
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cathodehibachifoil

1meter

Reduced area for better 
coupling for ArF laser

Reduced area 
allows 
advancement 
with ‘better’ 
foil materials

Hibachi Rib spacing flexibility to 
balance highest efficiency with greatest 
robustness trade-off 



Direct laser drive is a much more efficient approach

Direct Laser Drive – laser light directly 
illuminates the capsule   

• Much more efficient than indirect drive (>6x)

• Potential to reach the high gains (100) required 
for the fusion energy application.  

7

Best laser driver for high performance  

• Highly uniform target illumination

• Multi-THz bandwidth to suppress laser-plasma 
instabilities (LPI)

• Capable of zooming the focal diameter to follow 
imploding target

• Shorter laser wavelength to further suppress LPI 
and increase hydro-efficiency of implosion

• The 193 nm ArF laser best meets all of the 
above criteria
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Shorter Wavelength has increased ablation pressure as well as 
increased laser absorption and reduces CBET*

Direct drive ablation pressure increase's 
with shorter laser wavelength  

Ablation pressure vs laser  from hydrocode
1015 W/cm2 2.6 mm solid CH sphere 

*Cross beam energy transfer

Bates APS DPP 2022



Simulations using the LPSE code show the benefits of bandwidth and shorter 

wavelength for mitigating the absolute TPD* and SRS backscatter# instability
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*Two Plasmon Decay #Stimulated Raman Scattering Backscatter 

Bates APS DPP 2022



Simulations suggest high gains ( > 100) are possible in conventional target designs 
using < 1 MJ of ArF laser light with zooming; even higher gains with shock ignition
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NRL simulations indicate an ArF laser can achieve target gains (>100) needed for 
laser fusion power plant with much less laser energy than achieved by NIF 

Sample NRL 2D simulation of a ArF driven implosion that includes effects of an imperfect target 

time   

• This ArF driven shock-ignited target implosion achieved 160x fusion gain 
(ratio of fusion energy out to laser energy in) with 411 kJ of  laser energy,  
less than ¼ of NIF’s energy (1,900 kJ )

• An ArF laser with 10% electrical efficiency needs  100x fusion gain for the 
power plant application. 

0.6 
mm

0.12 
mm

temperature

density 



Phased plan progress from present to a pilot ArF laser fusion power plant 
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The ArF laser could enable power plants with laser energy below 1 MJ, which 
would speed development time and reduce cost. 

Physics channel – primarily public support 

IFE technology channel – attractive for private investment 



ArF laser direct drive inertial fusion – path to fusion energy  

• The physics underpinnings for laser fusion are well established.

• The deep UV broad bandwidth light from the ArF laser could be “game changing” 
towards reduced cost and development time for inertial fusion power plants.
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Collaborations
• Open to discussions in advancing inertial fusion energy as well as inertial 

confinement fusion 



Steve has made and looks forward to continuing to make 
significant contributions to many areas of relevance to inertial 
confinement fusion and inertial fusion energy. His achievements 
include:

 Co-inventor of Induced Spatial Incoherence - the first (and still 
best!) temporal beam smoothing technique

 The Pharos glass laser upgrade as well as development and 
construction of the two most energetic excimer lasers – the 
Nike KrF laser and the Electra ArF laser

 Vision toward high gain for ICF and IFE

 Any many, many more…

We would like to thank him for all his contributions!

Dr. Steve Obenschain recently retired NRL, December 2nd, 2022
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ArF optics continue to progress toward higher damage thresholds and 
improved durability  
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ArF use by lithographic industry has advanced  
durable 193 nm optics

High Damage threshold (29.8 J/cm2) fluorine resistant coatings have been 
developed for KrF amplifiers that may be adaptable to ArF
(Zvorykin V, Gaynutdinov R, Isaev M, Stravroshii D, Ustinovskii 2020 “Towards high-optical-strength, fluorine-resistant 
coatings for intracavity KrF laser optics,” Appl. Opt. 59, A198-A205)

ArF grade calcium fluoride windows survive 
up to 20 J/cm2 in 20 ns without bulk damage 
in advancements of microlithography
(Azumi M., Nakahata E., 2015 “Laser damage of Calcium Fluoride by ArF
excimer laser irradiation,” Proc. Of SPIE 9632, 932131-7.)


