FUSION POWER ASSOCIATES: 43rd Annual Meeting and Symposium

Fusion Strategy and Activities in ASIPP

Yuntao Song December 7-8, 2022

Institute of Plasma Physics, Chinese Academy of Sciences

Contents

- ASIPP strategy towards Fusion Power Plant
- Devices/Programs ASIPP involved in and related progresses
 - EAST
 - ITER
 - CRAFT
 - BEST
 - CFETR
- Summary

New strategy of ASIPP towards FPP

A new planed D-T devices, BEST, to support CFETR with a low risk and cost.

Relationship between devices involved by ASIPP

Yuntao Song/43rd FPA/Dec. 7-8, 2022

ASIPP

EAST Mission: Steady state operation and key physics

- Steady state operation scenario with high performance
- Experimentally support of key physics
- Validation of novel technology for future devices

- Advanced scenario development
- Confinement and transport
- MHD and disruption
- Pedestal physics
- Divertor and PWI issues
- Energetic particle instabilities

EAST machine status and capability

ITER-like upper W-Divertor

Upgraded lower W-Divertor

LHCD PAM antenna

ICRF low k antenna

Upgraded vacuum system

- 1. Full metal wall with ITER like W-Divertor
 - W/Cu structure lower divertor with heat exhaust of 10 MW/m²
- 2. Flexible H&CD combination (with total source power ~30 MW)
 - LHCD with PAM antenna, ICRF with low k antenna, 4 ECRH systems, 2 co-NBIs

Achieved Long Pulse Operation with High Te(0)

 2018
 2021 (May)
 2021 (Dec.)

 Te0>8.6keV
 Te0>10keV
 Te0>6keV

 10s at USN
 101s at LSN
 1056s at LSN

EAST Shot 106915 (Dec. 2021): 1056s pulse length, T_i (0)~1.0keV, n_i (0)~2.2x10¹⁹m⁻³, τ_E ~60ms

Steady state long Pulse Operation

In 1056s long pulse operation:

- Fully non-inductive plasma with dominant eheating
- Stable control of plasma equilibrium configuration, particle recycling and heat load

1056s High-confinement Super I-mode

time (s)

Self-organising regime - Interaction between MHD, turbulence and electron heat transport for sustaining stationary ITB

ASIPP

Long Pulse Operation with H-mode

H-mode in duration of >300s achieved in 2022 (unpublished):

10/26

Yuntao Song/43rd FPA/Dec. 7-8, 2022

ASIPP

EAST next goal and plan

- Demonstrations of high power injection (>10MW/100s)
 - w/o hot spot on guarder limiter for 4.6GHz LHW (→4.0-6.0MW ~70%)
 - New PAM_2.45GHz for long distance coupling (→1.0MW ~50%))
 - Coupling more ICRF power with lower $k_{//}$ antenna (\rightarrow 4.0-6.0MW ~50%)
 - The four gyrotrons of ECRH (→2.0MW ~50%)
 - Favorable NB operational regime with less fast ion loss (→4.0-6.0MW ~75%)
 - Compatibility and synergy effect with different heating schemes
- Extension of plasma operational regime (High priority)
 - Relevant physics research in support of 400s H-mode with high performance
 - Scenarios Development: High Beta SSO / Hybrid /IBS_AT
 - H&CD, T&C, DSOL physics, dynamic control, EP physics, etc.
 - Exploration of high performance regime relevant to ITER baseline when more power is available
- EAST 2022 schedule :

Months	Feb.	Mar.	A	pr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Physics Exp.	Upgrade Preparatory		/	1 st	Camp	aign				2 ^r	^{id} Cam	p.

ASIPP contributions to ITER

A major ITER contributor in China:

- Up to 73% ITER procurement packages (PAs) in China
- > Other ITER contracts like PF6, TAC1, Bellows...
- > Human resource support to ITER: IPAs, visiting scientists...

12/26

ASIPP contributions to ITER: PAs

Conductors: 100% finished.

AC/DC: All components were delivered to ITER site by 2021; **PPEN**: on-site installation support is going on.

Feeder: R&D finished, 75% produced, planning to finish in 2024.

CC : 98% BTCC and 50% SCC Coils produced, planning to finish in 2023.

ASIPP

ASIPP contributions to ITER: Contracts

PF6 Coil

ITER Assembly (TAC1)

Yuntao Song/43rd FPA/Dec. 7-8, 2022

Large Bellows

ASIPP

CRAFT national project, supporting future devices (BEST/CFETR)

Comprehensive Research fAcilities for Fusion Technology

Approved	Chinese National Government				
Mission	Key research platforms system R&D in support of future devices (BEST/CFETR)				
Schedule	2019-2025				
Status	Under construction, campus finished				

CRAFT national project, supporting future devices (BEST/CFETR)

ASIPP

CRAFT Progress (part)

All systems to be ready in 2025

TF coil testing facility for BEST and CFETR

Dimensions: $21m \times 16m$ Winding Speed: 300-500 mm/min Bearing capacity: > 50t The contour accuracy: 3mm

Linear plasma device for material study

Particle flux: 10²⁴ m⁻²s⁻¹ Maintained: >24 h

N-NBI system testing platform

Beam energy: 55keV Beam current: 3.5 A Extracted H⁻ ion density: 160A/m²

ASIPP

BEST facility (under design)

Burning plasma Experimental Superconducting Tokamak

- Burning plasma with lower cost (construction and operation)
- To understand Alpha particle behavior and its control
- To develop the integrated control of a fusion steady state scenario

ASIPP

Main design parameters for BEST

- Burning plasma physics with Q >5
- DT plasma in steady-state at low Q (Q~1), with adequate neutron fluence for material, blanket and fuel inventory testing.
- Develop and explore methods for achieving high Q operation applicable to fusion pilot plants.

Main parameters					
Plasma current	I _p =3-7 MA				
Major radius	R=3.6 m				
Minor radius	a=1.1 m				
Elongation	K=a/b=1.9				
Toroidal field	B _T =6.15 Τ				

Research plan for BEST

Yuntao Song/43rd FPA/Dec. 7-8, 2022

ASIPP

CFETR: Chinese Fusion Engineering Test Reactor

CFETR: A DEMO facility before FPP in China

- Self-sustained burning plasma with

 high fusion power (200-1500MW),
 high duty cycle (≥0.5),
 high fusion gain (Q=3-30)
- ➤ Tritium breeding technology with TBR≥1

Domestic Program of CFETR design finished (Dec. 2021)

CFETR design progress: Physics

Scenario design

	P _{fus} (GW)	P _{NB} /P _{EC} (MW)	H _{98y2}	β _N /β _P	f _{bs} /l _i	I _p (MA)	n _{e,line} (10 ²⁰ / m ³)
Hybrid	0.95	30/50	1.14	2.3/1.5	0.45/0.9	13	1.0
SS	1.0	30/55	1.33	3.0/2.5	0.78/0.8	10.5	0.92

Hybrid and Steady State scenarios

Configuration and divertor

- Conventional SN divertor
- Detachment with Ne injection
- Compatible with blanket

CFETR design progress: Engineering

> Machine engineering and integration design completed

Collaboration: Networks and organizations

Collaborate with Leading Institutes in US/Germany/French/Korea/Japan...

SPAs: Cooperate on the Integrated Modeling, W-Divertor, ICRH antenna, RMP physics, Infrared diagnostics and so on

Collaboration: Joint Experiments on EAST

EAST: A shared and open platform to the world

Example: DIII-D & EAST joint experiment

On-site and remote participation

Collaboration: Fusion technology for the world

ASIPP

Summary: ASIPP Fusion Research Strategy

> Fasten application of clean, safe, non-carbon fusion energy

- **EAST:** Continually exploring SSO and other critical physical issues in support of ITER/BEST/CFETR.
- **ITER:** Actively participating in construction and operations in support of BEST/CFETR
- **CRAFT:** Developing of key techniques/materials for BEST/CFETR with innovations and ITER reference.
- BEST: Fusion reactor related D-T burning plasma with low cost and risk in support of CFETR
- **CFETR:** a planed China DEMO FPP with supports from EAST/BEST/CRAFT

Strengthen global collaboration and train young generation

Thank you !