Meeting the Bold Decadal Vision Update from the DIII-D National Program

Presented by **RJ Buttery** on behalf of the DIII-D team

To Fusion Power Associates Annual Meeting

Dec 20th 2023

- Restructured to close gaps on FPP & ITER
 - Goal oriented decision making structures →
 - TRL approach targets reactor needs

Restructured to close gaps on FPP & ITER

- Goal oriented decision making structures
- TRL approach targets reactor needs

– Shared leadership model reflects participation ->

- 33% Unis, 31% Nat labs, 31% GA, 4% international
- 13% women (6 out of 48 roles)
- Many early career leadership opportunities

II-

Restructured to close gaps on FPP & ITER

- Goal oriented decision making structures
- TRL approach targets reactor needs
- Shared leadership model reflects participation

Plasma Interacting Technology Program

- Platform approach: rapid access & support
- Explicit FPP goal, serving wider community

Restructured to close gaps on FPP & ITER

- Goal oriented decision making structures
- TRL approach targets reactor needs
- Shared leadership model reflects participation

Plasma Interacting Technology Program

- Platform approach: rapid access & support
- Explicit FPP goal, serving wider community

Outreach to private sector & wider community

- New user framework open, free, supported. IP protected
- Workshops, consultations, Program Advisor Committee
 - 7 institutions signed up already

Restructured to close gaps on FPP & ITER

- Goal oriented decision making structures
- TRL approach targets reactor needs
- Shared leadership model reflects participation

Plasma Interacting Technology Program

- Platform approach: rapid access & support
- Explicit FPP goal, serving wider community

Outreach to private sector & wider community

- New user framework - open, free, supported. IP protected

Independent oversight

- New User Board of Pls, chaired by university
 - Representative Research Council selected run priorities
- All projects determined & owned by DOE

Serving the national interest as an SC User Facility

Gyrotron upgrade to 10 lines, doubling power

 Scope steady state and pulsed FPP limits & develop control in burning plasma relevant regimes

Gyrotron upgrade to 10 lines, doubling power

 Scope steady state and pulsed FPP limits & develop control in burning plasma relevant regimes

New shape & volume rise divertor being installed

- Extend pedestal density & pressure limits & test slot principles

Gyrotron upgrade to 10 lines, doubling power

 Scope steady state and pulsed FPP limits & develop control in burning plasma relevant regimes

• New shape & volume rise divertor being installed

- Extend pedestal density & pressure limits & test slot principles
- Successor research divertor to isolate detachment in planning ightarrow

Gyrotron upgrade to 10 lines, doubling power

 Scope steady state and pulsed FPP limits & develop control in burning plasma relevant regimes

HFS-LHCD

• New shape & volume rise divertor being installed

- Extend pedestal density & pressure limits & test slot principles
- Successor research divertor to isolate detachment in planning

New high field side LHCD system

- Efficient high density current for reactors

←built

HFS-LHCD

Gyrotron upgrade to 10 lines, doubling power

 Scope steady state and pulsed FPP limits & develop control in burning plasma relevant regimes

• New shape & volume rise divertor being installed

- Extend pedestal density & pressure limits & test slot principles
- Successor research divertor to isolate detachment in planning

New high field side LHCD system

- Efficient high density current for reactors

Runaway electron mitigation coil design started

HFS-LHCD

Gyrotron upgrade to 10 lines, doubling power

 Scope steady state and pulsed FPP limits & develop control in burning plasma relevant regimes

New shape & volume rise divertor being installed

- Extend pedestal density & pressure limits & test slot principles
- Successor research divertor to isolate detachment in planning
- New high field side LHCD system
 - Efficient high density current for reactors
- Runaway electron mitigation coil design started
- Pellet upgrades to raise density & solve disruptions

HFS-LHCD

Gyrotron upgrade to 10 lines, doubling power

 Scope steady state and pulsed FPP limits & develop control in burning plasma relevant regimes

Runaway

New shape & volume rise divertor being installed

- Extend pedestal density & pressure limits & test slot principles
- Successor research divertor to isolate detachment in planning
- New high field side LHCD system
 - Efficient high density current for reactors
- Runaway electron mitigation coil design started
- Pellet upgrades to raise density & solve disruptions
- Planning full wall change out & technology tests

sdu't grund Pellets

Research

divertor

2026

 Address fusion technology needs including innovation in plasma confinement with relevant wall material – materials choice by community

Exciting capabilities in next 1 – 4 years

Supporting Development of Workforce & Addressing DEIA

Early career opportunities

- Leading science, talks, papers, systems
- New mentorship program

Prof. Livia Casali "Innovative Core-Edge Solutions for Tokamaks" Co-lead DIII-D Core-Edge Task Force Now Professor at UT Knoxville

Early career award

Mike Van Zeeland

A. Rosenthal MIT PhD DOE SC Highlight

Supporting Development of Workforce & Addressing DEIA

Early career opportunities

- Leading science, talks, papers, systems
- New mentorship program

Strong student engagement

- Dedicated PhD run time supported 18 theses
- Learning seminars & social connection
- Year round internships thru' SULI & CCL
- 254 postdocs & students: 36 uni Pls

Prof. Livia Casali "Innovative Core-Edge Solutions for Tokamaks" Co-lead DIII-D Core-Edge Task Force Now Professor at UT Knoxville

Shaun Haskey

Early career award

MIT PhD **DOE SC Hiahliah**

Early career award

Mike Van Zeeland **APS Fellow**

"Main Ion Transport and Fuelina in the Pedestal: From Formation to Sustainment"

Leader of key DIII-D CER diagnostic

FY23 universities	
Graduate	123
Undergrad	78
Uni PI awards	36

Supporting Development of Workforce & Addressing DEIA

Early career opportunities

- Leading science, talks, papers, systems
- New mentorship program

Strong student engagement

- Dedicated PhD run time supported 18 theses
- Learning seminars & social connection
- Year round internships thru' SULI & CCL

Addressing DEIA

- Code of conduct with consequences
- Open opportunities policy w/ career pathways
- Implicit bias and bystander training
- SWE, HSIs, CuWiP, GEM interns, Preuss school, girls TechTrek
- Pioneering double anonymized XP review

Ongoing path - more work needed

RJ Buttery/FPA 2023/16

Prof. Livia Casali "Innovative Core-Edge Solutions for Tokamaks" Co-lead DIII-D Core-Edge Task Force Now Professor at UT Knoxville

Early career award

"Main Ion Transport and Fuelina in the Pedestal: From Formation to Sustainment'

Leader of key DIII-D CER diagnostic

Mike Van Zeeland **APS Fellow**

FY23 universities Graduate 123 Underarad 78 Uni Pl awards 36

Shaun Haskev

DOE SC Highligh

Early career award

Record 1604 hours in last 2 years

- 140 scientific studies, 18 PhD theses
- Hybrid remote operation developed

DIII-D Run Hours per Year

- Record 1604 hours in last 2 years
- Strong delivery of projects
 - Negative triangularity armor enabled transformational
 insights into exciting potential reactor configuration

- Record 1604 hours in last 2 years
- Strong delivery of projects
 - Negative triangularity armor enabled transformational insights into exciting potential reactor configuration
 - New helicon ultrahigh harmonic fast wave with innovative traveling wave antenna provided heating & current drive

- Record 1604 hours in last 2 years
- Strong delivery of projects
 - Negative triangularity armor enabled transformational insights into exciting potential reactor configuration
 - New helicon ultrahigh harmonic fast wave with innovative traveling wave antenna provided heating & current drive

Record 1604 hours in last 2 years

0.2

- Strong delivery of projects
- Exciting scientific results

- Record 1604 hours in last 2 years
- Strong delivery of projects
- Exciting scientific results
- International engagement
 - New joint task forces on:
 - Long pulse with Tungsten
 - High beta AT
 - Support by DIII-D team members to many international facilities
 - Strong & accelerating engagement with ITER

Research is Rapidly Advancing the Field – Open to More

- Record 1604 hours in last 2 years
- Strong delivery of projects
- Exciting scientific results
- International engagement

Call for proposals:

- Fusion: d3dfusion.org
- Frontiers: callforruntimeproposals.org
- Technology: Tyler Abrams & Andrew Dvorak
 - <u>abramst@fusion.gat.com</u> <u>dvorako@ornl.gov</u>

Diagnostics: Suk-Ho Hong <u>hongsukho@fusion.gat.com</u> RF: Bart Compernolle <u>vancompernolle@fusion.gat.com</u> Disruptions: Jeff Herfindal <u>herfindalj@fusion.gat.com</u>

Materials: Dmitri Rudakov rudakov@fusion.gat.com and Greg Sinclair sinclairg@fusion.gat.com

Get in touch to develop ideas

A DOE OFFICE OF SCIENCE USER FACILITY HOSTED BY GENERAL ATOMICS

DIII-D Working to Rapidly Advance US Fusion Agenda

- High productivity research program
 with rapid upgrade capability
- Re-oriented to address goals of the Long Range Plan and Bold Decadal Vision

• Available, open, supported User Facility for the whole nation

Come join us – we are here to help

Additional Information Slides

DIII-D is Being Redeveloped for the Fusion Era

Pursue rapid progress and goal-oriented approach

- A high volume, effective research facility
- Close the necessary research gaps for an FPP – Execute 'the EXCITE mission'
- Testbed for fusion technology and private sector
- Enable ITER to rapidly reach its potential
- Basis for international collaboration and leadership

Critical infrastructure to rapidly advance fusion goals

Compact Fusion Pilot Poses Critical Plasma Research and Integration Challenge

Compact scale requires higher power densities:

- > High pressure and energy confinement
 - To fuse sufficiently in smaller volume & retain heat

> Power handling and wall compatibility

- To mitigate hot plasma exhaust at high duty cycle

> Plasma interacting technologies and control

- To resolve in plasma & fusion environment

Accounts for key cost drivers in the FPP ightarrow

 Each needs better solutions than what we know now, requiring physics investigation

Different elements trade off against each other

NATIONAL FUSION FACILITY

Plasma research vital to FPP design

Parameter Regime for SHPD

FPP Requires an Integrated Core-Edge-Technology Solution

Tokamak solution optimizes down two paths

- Steady state: Exploit natural improvements in stability & transport through shaping, profiles & high β
 - > Lower current, self-driven solutions decrease loads and can be sustained noninductively
 - > Need to validate projected solutions
- Pulsed: High confinement through high current
 - > Robust performance but increased instability, heat & stress
 - > Can stability be maintained?
- Common research needs to address power handling, transients, control, and required technologies

- Resolve compatibility between different parts of solution

Proposed upgrades enable DIII-D to explore these challenges & discover solutions

Basis of Approach

Controlling variable

Working with other funded facilities, DIII-D can close required gaps for ITER and FPP

DIII-D Can Close the ITEP Gap on a Fusion Pilot Plant

DIII-D Can Close the ITEP Gap on a Fusion Pilot Plant

- Five year plan sets out the research necessary
- Shape and volume rise opens up the potentia
 - Higher pressure and density
 - Opaque regimes at low collisionality
- RF rise expands to relevant physics regimes
 - Supports high density at low collisionality in reactor relevant conditions:
 - Thermalized low rotation core
 - Divertor-SOL-pedestal-core interaction with short mean free paths & penetration depths
 - Flexibility to scope & resolve core solutions

Basis to explore high dissipation exhaust regimes with high performance core

ECH provides electron heating & current drive without fueling or torque

93kV beams provide 25MW heating with low fueling & high current drive

Helicon or HFS LHCD provide high density core heating & current drive

Steady State FPP Core-Edge regimes

Pulsed FPP regimes that push Core-Edge further

Hydrogen tolerates high Z much better than D

FLOW RATES

