Toward Realistic Fusion Pilot Plants by Enabling Technology and Available Supply Chain

KYOTO FUSIONEERING Presented by Satoshi Konishi CEO an Chief Fusioneer

FUSION for the FUTURE

JP

US

UK

Countries

Kyoto Fusioneering Is a Unique company that provides Ingegrated Fusion Plant technology to the World developers of fusion commercial energy.

Founded in100+\$90m+2019Team membersRaised

We emphasize Energy Conversion Systems, Fuel Cycle, Nuclear Technology, and Supply Chain for the fusion energy cycle.

© 2023 KYOTO FUSIONEERING LTD. ALL RIGHTS RESERVED

Shareholders: Global companies' support

We are supported by not only VCs, but Industry, Financials and Public.

We also introduce our sponsors to other Fusion Companies to promote Fusion Supporing Funds.

Kyoto Fusioneering: The Leadership Team

Prof. Satoshi Konishi

Co-founder CEO, Chief Fusioneer

We are organizing a Strong Team of **Business**, Financial And Technology

Prof. Keishi Sakamoto

CTO, Director, Head of Technical Development

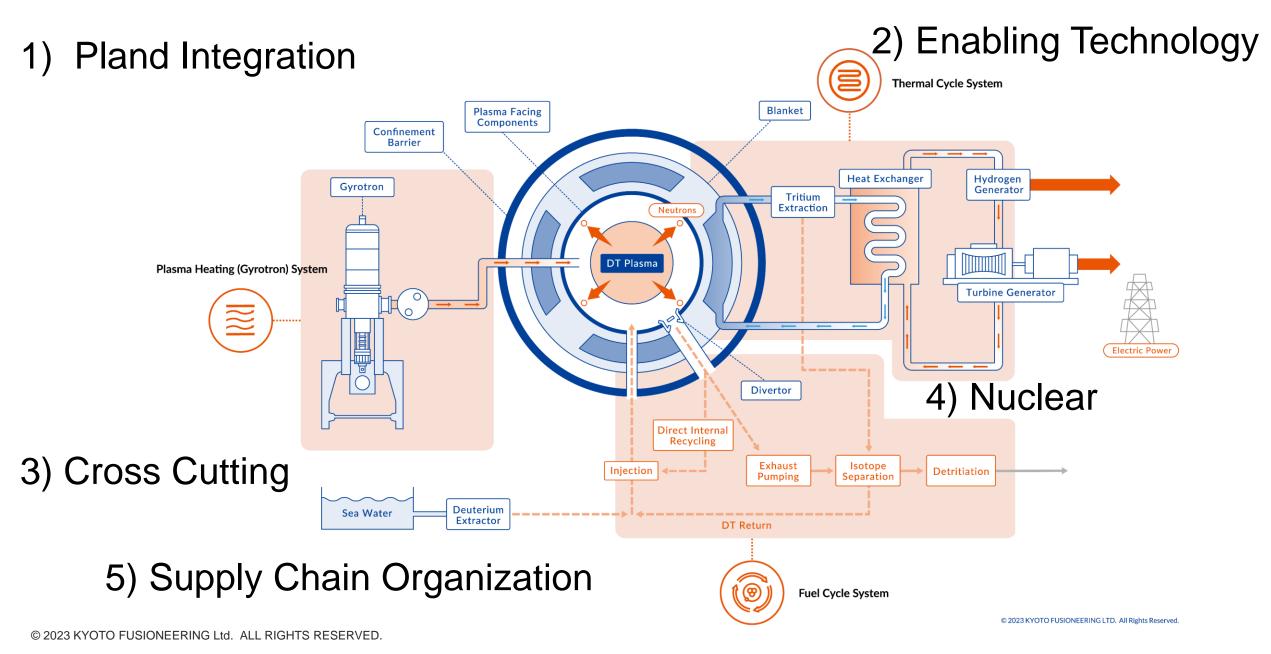
Prof. Keishi Sakamoto, joining Kyoto Fusioneering in 2021 as Executive Officer, has decades of R&D experience in plasma heating, notably at Japan's National Institute for Quantum Science. He significantly advanced gyrotrons, achieving a world-first in output energy and efficiency. Recognized with awards from MEXT Japan and the European Physical Society Plasma Division, Keishi now serves as a Special Professor at Kyoto University's Institute of Advanced Energy and holds a Ph.D. from Kyushu University.

Mr. Kiyoshi Seko

COO, Director

Kiyoshi boasts a comprehensive background in strategic investments and business development. Formerly with Mitsubishi Corporation, he orchestrated significant M&As and JVs, such as alliances with Princes, Alfa Group, and Toyo Tire, cumulatively worth billions. An MBA from IE Business School, Spain, and with dual M.S. degrees from Kyoto University and the University of Tokyo, he transitioned to Coral Capital, executing venture investments in diverse tech sectors before joining Kyoto Fusioneering. He's an avid reader and tech enthusiast.

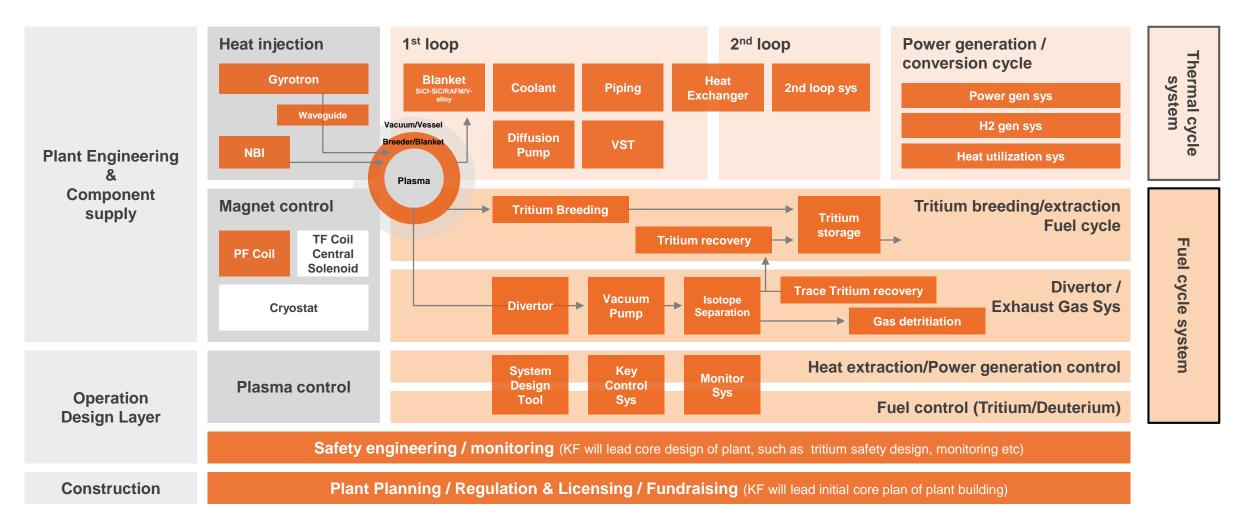
We transfer Senior Technology and Vice President of Plant Technology Knowledge to Young Generation and Newly joind Industry.


Dr. Colin Baus

Colin is a physicist with a PhD at the Large Hadron Collider at CERN (CMS experiment) on heavy-ion cross sections and the connection to astroparticle physics. As co-author of the hadronic interaction tool CRMC, he has deep knowledge in nuclear physics. After several years in the private industry, Colin joined Kyoto Fusioneering. Here, he is author of the high-temperature fusion blanket SCYLLA design and currently oversees technical development of the UNITY programme for fusion thermal cycle and fusion fuel cycle in Japan. He is also a visiting researcher at Kyoto University.

Kyoto Fusioneering's Role in the Fusion Industry

Industrial Fusion Network to be Organized by KF


Function	ucted by:	Component * Neutron Irradiation Data Acquisition	Skills/Materials	Industrialization	
	Superconducting	Integration of winding and structure Structure* Insulator*	Superconductor Winding technology 3D measurement Welding Cryogenic materials Precision machining Radiation-resistant insulating material	Superconducting Technology	
Confinement	Vacuum vessel piping High-voltage power supply		Low-activation steel 3D measurement Welding Precision machining Tritium confinement oltage Negative instruction DC secologities	(Analysis and Simulation, Acceleration, Energy Storage, etc.)	
Heating	Neutral beam injection Radio frequency	Neutralization cell* Beam-facing materials Gyrotron* Waveguide	Supply Negative for production De acceleration Deannice Neutralization Heat removal Cerami c Vacuu exhau Electron gun Superconducting coil Diamond w	m ist Processing and Power Transmission Technologies	
Reactor design/ interaction Exh	Fuel system	Gas puff Tritium handling* Exhaust gas	RF transfer Adiabatic plate Vacuum exhaustic Gaz Valve Isotope ice formation Pellet acce Isotope separation Tritium recovery Vacuum	Ultra-precision Machining, etc.)	
technology	Divertor Cooling system		Tungsten Reduced activation ferritic steel Copper alloy Joining Welding	Resource Recovery & Refining Technologies (Li Recovery, Rare Metal	
Plasma control safety Maintainability standards/	Blanket	Coolant* Breeder material* Structure* Tritium recovery	Li Be Reduced activation ferritic steel Tritium handling Joining Welding 3D recognition Heavy object Remote	Refining, CO2 Reduction, etc.)	
Criteria site development Coolin	maintenance equipment	Vehicle Manipulator End effector Mobility Mobility support Caster Hot cell maintenance* Laser measurement Visual inspection Particle measurement	Mobility deployment Reduced activation materi Drive Cutting/Welding Remote inspection urement Laser Optical fiber Detector Vacuum exha	al Maintenance Technologies (Remote Operation, Virtual	
Maintenand	device communicat	ion and RA connet develop a	JA-DEMO) that ITER	Space, Robotics, etc.)	
Monitoring & prediction	High-performance computing	Supercomputer Server Individual terminal	CPU GPU Memory HD OS Cloud Data Application	Monitoring/Predictive Technologies (Spatial Awareness, AI Analysis, Simulation, Communication,	
© 2023 KYOTO FUSIONEERING LTD.	ALL RIGHTS RESERVED.	Computation Large Large-scale code datasets simulation	Simulation technology AI and machine learning Multiscale	etc.) Confidential 6	

~•

Kyoto Fusioneering's Capability and Coverage

Kyoto Fusioneering is focused on plant technologies and systems - covering the majority of systems **agnostic to the plasma concepts**

Accelerating technology development

- to improve the TRL of the thechnology to make Pilot Plants Possible

KYOTO FUSIONEERING

		KF's R&D domain	TRL today	TRL 2026	Market by 2026	Market by 2030
		ITER spec	7	9		
Plasma Heating	Gyrotron	Higher frequency (> 236GHz)	4	7	\$500M	\$1B
_		Continuous wave operation	4	7		
Magnet Control	Coil	PF Coil	7	9	\$100M	\$300M
		SCYLLA© Blanket	3	6		
		Molten salt(FLiBe) Blanket & Loop	3	6		
		Lithium Blanket & Loop				
		Solid Propagation Material & H Permeation Properties	3	6		\$700M
	Blanket/1st loop	Li-Pb Impurity control	3	7		
Thermal cycle		Low activation ferritic steel / Fluid material coexistence	3	7	\$300M	
system		Simulation of Tritium production	5	9		
		SiC-Hydrogen isotope permeation diffusion behaviour	3	7		
		Li-Pb-Hydrogen/Li-Hydrogen isotope behaviour	4	7		
	2nd loop	SiC Heat Exchanger	5	7		
		GNOME Reactors	2	6		
		High tritium compatible roughing pump	7	9		
	Exhaust	Hydrogen Isotope Separation Pump	3	7		
Fuel		Proton Conductor Pump	3	7		
cycle		Tritium tracing	3	8	\$300M	\$1B
system	Tuitiume la vere aliar a Qu	Liquid Metal Diffusion Pump	7	9		
	Tritium breeding &	Droplet Thermal Tritium Recovery	4	7		
	extraction	Tritium storage	3	7		
Power Gen/	Power Generation	Innovative brayton cycle	5	8		
		Supercritical Carbon dioxide turbine	5	8		
		Biomass gasification	3	7	\$150M	\$300M
Conversion Sys	Hydrogen	Membrane Reactors	2	5		
	Carbon fixation	Biomass carbonization	2	5		
					TRL: Technical R	eadiness Level

© 2023 KYOTO FUSIONEERING Ltd. ALL RIGHTS RESERVED.

Our Depth of Expertise- from design, materials to plants

We operate across various levels in our areas of focus.

Pilot Plant Design & Development

For several Milestone-Based Fusion Development Program awardees and other fusion developers, KF:

- Is designing the plasma heating, fuel cycle and thermal cycle system in conjunction with the overall plant.
- Will supply components and systems in these areas to the FPP and CPP programs during the construct phase.
- Will continue to supply consumable components (e.g., blanket) throughout operations.
- And more (see 2. FPP Development Support)

Integrated Testing

Designing and overseeing EPC of two integrated testing facilities to demonstrate thermal and fuel cycle systems.

UNITY-1 in Kyoto for thermal cycle:

- •1000° C Li-Pb, Li, FLiBe loops with blanket test.
- MHD testing with SiC_f/SiC insulators.
- 1st ever electricity gen from blanket module.
- DIR testing with proton conductor pump
- UNITY-2 in Ontario for fuel cycle:
 - •~40g of T, ~50L Li-Pb loop w/ VST T extraction Gyrotron
 - Dual storage system (dU, ZrCo)
 - Dual ISS (TCAP, CD), outer cycle (WDS, ADS) (Waveguide)
- Centrifugal Pellet Injection
- (Launcher)

Engineering & Manufacturing

Designing and **developing** a suite of fusion-grade components and systems.

- Plasma heating system (see gyrotrons)
- Self-cooled lithium-lead blanket modules (see blankets)
- Tritium compatible metal diffusion, roughing, turbo molecular pumps (see roughing pump)
- Direct internal recycling system

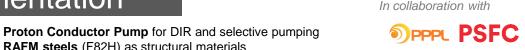
Scientific Discovery & Experimentation

Developing fusion materials & manufacturing methods.

- ٠ New grade of SiC₄/SiC with liquid phase sintering and particle • dispersion composite manufacturing process.
- New joining methods for similar and dissimilar material bonding with SiC₄/SiC
- Mo alloys for novel heat exchangers.
- FLiBe purification techniques & compatible materials.

- Tritium storage beds (see storage)
- TCAP and CD isotope separation systems Vacuum Sieve Tray for Tritium extraction
- Li, Li-Pb, FLiBe loops and technology
- And more (see Components & Systems)

With dozens of the 100+ fusion-relevant suppliers in Japan, including:



and 70+ more.

In collaboration with

and more.

and delivery partners.

In partnership with

Clients/partners

Power Supply

Plasma heating system test facility:

- **RAFM steels** (F82H) as structural materials New alloys for storage beds.
- Impurity and cold trapping studies for Li-Pb And more (see Material Development)

Plasma Heating System (Gyrotrons)

Overview

Kyoto Fusioneering's gyrotron is a large vacuum tube capable of continuous 1 MW-class output power with high-power millimeter waves, which consists of the gyrotron body, a superconducting magnet, and a DC power supply. The cavity resonator inside the gyrotron oscillates 1 MW-class millimeter waves, which are reflected by an internal mirror and output to the outside through a vacuum-sealed window.

Product Details

Product Index						
Pulse Width	CW operation					
Efficiency	>50% from input power to output RF					
Mode Purity	>90% from TE mode to HE11 mode					
Aging (Conditioning)	Shall be operated by KF					
Leadtime	~approx. 20 moths from the order to delivery					

Collector				
Output window	Electron bea	m	•	
	Mirror DC break	Body PS ~ +30kV	Anode PS ~ - 10kV	Main PS ~ -50kV
Mode converter	Cavity =			Ī
Electron gun				

Frequency	236 GHz	203.1 GHz	170 GHz	137 GHz	104 GHz	35 GHz	28 GHz		
Oscillation Mode	TE43,15	TE37,13	TE31,11	TE25,9	TE19,7	TE10,6	TE8.,5		
Output Mode		Gaussian Beam							
Magnet	9.2T	7.98T	6.63T	5.32T	4.08T				
Power (>1s)	1MW (to be tested)	1MW	1.2MW 1MW (300s)	1MW	1MW	1 MW	1 MW		

Experts at KF

- Keishi SAKAMOTO, PhD, Nuclear Engineering
- Yosuke HIRATA, PhD, Engineering, Energy Science
- <u>Kenichi HAYASHI</u>, M.E., Electronic Engineering

Expert Advisors

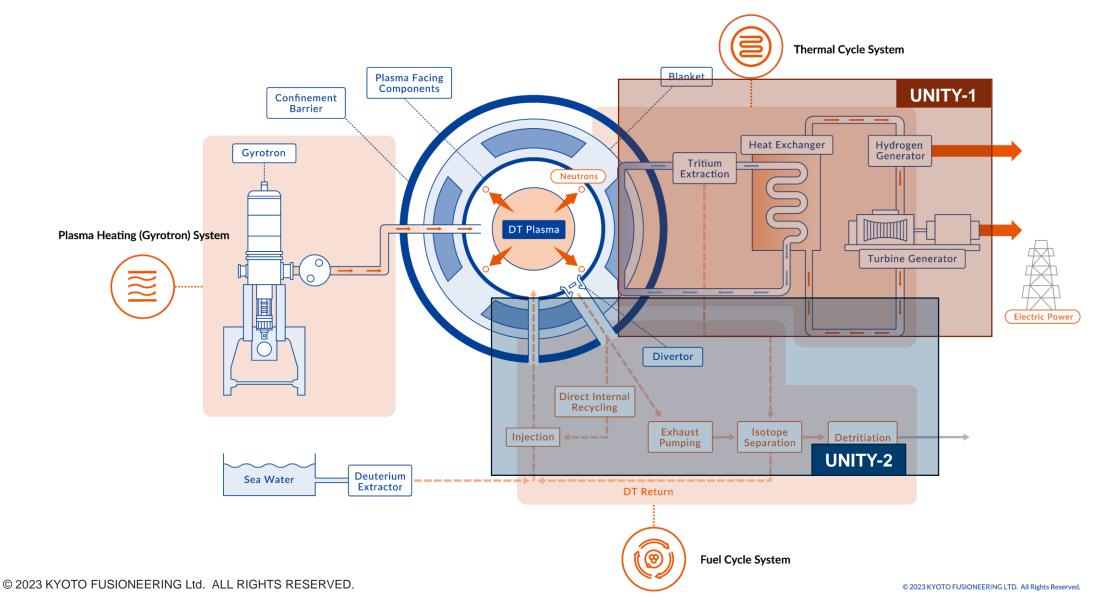
- Tsuyoshi IMAI, PhD
- Yasuhisa ODA, PhD

Gyrotron Ongoing Projects

Kyoto Fusioneering is currently supplying gyrotrons to public and private fusion industry leaders

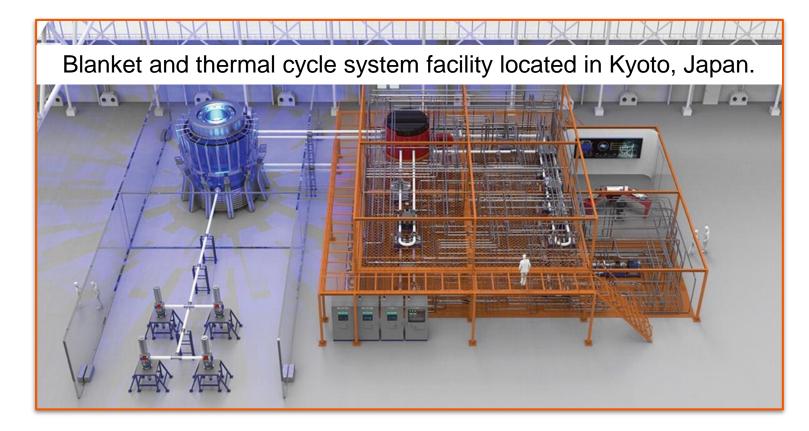
	Client		Qty	Frequency (GHz)	Power (MW)	Pulse (s)	Status (as of Nov 2023)
1	Ministry of Economy Trade and Industry		1	236			Under test at Amagasaki lab
2	UK Atomic Energy Authority		2	28 35	0.9	3	FAT@NIFS -> Kyoto Research Ctr.
3	European Private Fusion Program		1	104 137	1.0	2	FAT@QST (Dec 2023~)
4	Asian Public Fusion Program		1	104 137 170	0.8 0.9 0.9	5 10 300	Design Review, Manufacturing
5	U.S. Department of Energy's DIII-D Nation Fusion Facility (General Atomics)		2	104 137 170	1.0	10	Design Review, Manufacturing
6	KF R&D 1		1	236	1.0	CW	Test
7	KF R&D 2		1	137	2.0	CW	R&D
	Delivery Status (as of No	womk	or 9	0000)			~

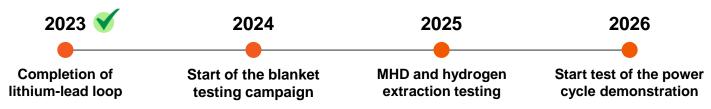
Delivery Status (as of November 2023)


Contract	Design + R&D	Manufacturing	Test	Delivery
	5	4	6 2 1	

© 2023 KYOTO FUSIONEERING Ltd. ALL RIGHTS RESERVED.

Unique Integrated Testing Facilities




- to develop and demonstrate Integrated Pilot Plant Technology

UNITY-1 Overview

Location: Japan (under construction)

Thermal Cycle and Blanket System:

- Blanket test section (1000°C LiPb, Li, FLiBe)
- 300 L LiPb inventory
- 4T NbTi magnet
- IH heating and surface heating for blanket module 30x30x70 cm
- Two heat exchangers and power conversion (first electricity generation from a blanket module)

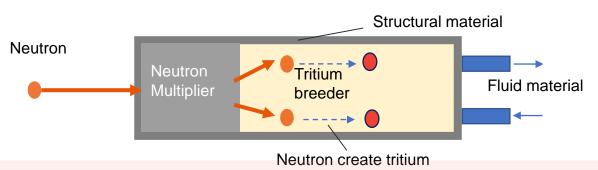
Fuel Cycle:

- Deuterium injection as proxy for tritium
- Tritium extraction via VST, electrochemical
- Exhaust pumping from vacuum vessel (pump train)
- DIR testing with proton conductor pump

Materials:

- Compatibility in flow conditions (up to 50 L/min via 3 EMPs)
- FLiBe and Li piping material tests
- MHD testing with SiCf/SiC insulators

Thermal Loop with liquid metal or molten salt



Kyoto Fusioneering is developing technologies of designing and fabricating loops of several candidate breeder fluids to interface MFE,ICF and other pulsed plasma with wet wall/

Blankets require materials to serve

as:

- Tritium breeder
- Neutron multiplier
- Heat extraction fluid
- Blanket structural material

Kyoto Fusioneering can provide solutions for this incredibly challenging system that can achieve **high temperature heat extraction**, **tritium breeding**, **tritium extraction** for several candidate

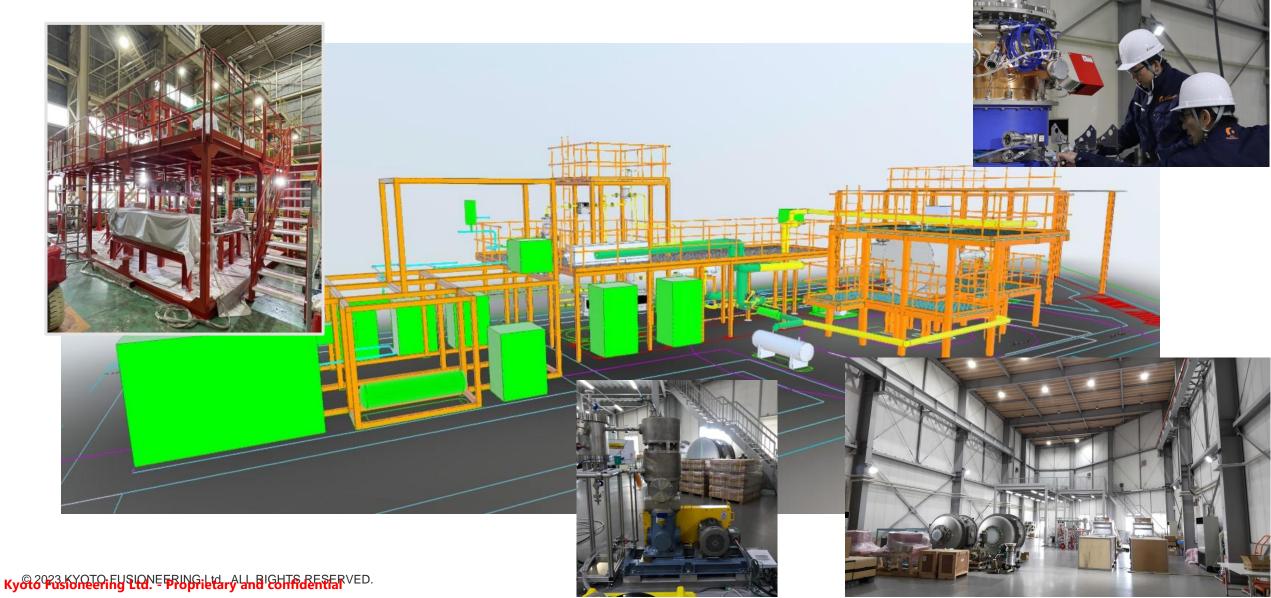
LiPb

LiPb base loop

materials: FLiBe

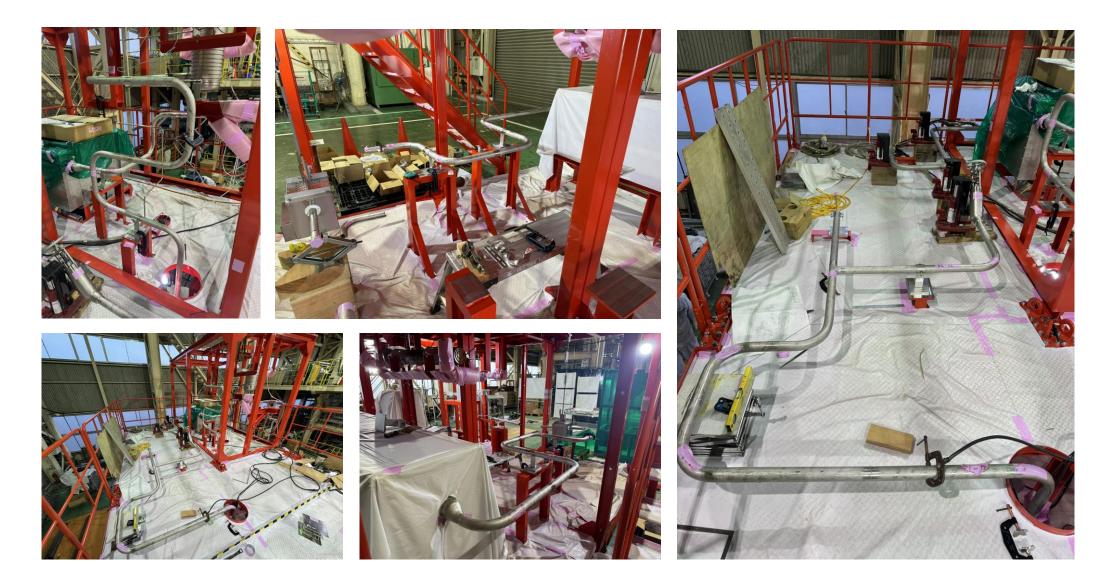
FLiBe test loop benchtop experiment sited at Kyoto University (Inconel 600)

Pure Lithium



IFMIF Lithium Loop (Prof. Sakamoto formerly led this project)

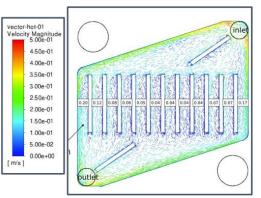
Technical Development



• Thermal Cycle

LiPb Loop - Progress

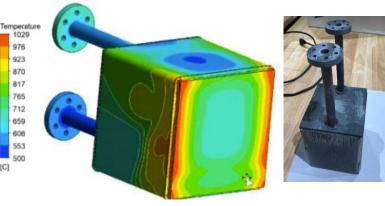
UNITY-1 Thermal Cycle Key Components


Structure

Electromagnetic Flow Meter

Dump Tank

High temperature Heat exchanger



Electrical Magnetic Pumps

Blower

Vapor Trap

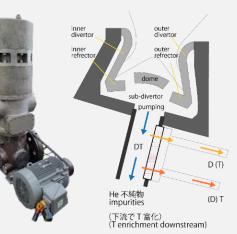
Blanket Module Mock-up

SiCf/SiC, Vanadium Alloy, RAFM, Mo for flow path materials and components are developed.

UNITY2 - Tritium Fuel Cycle

dissolution

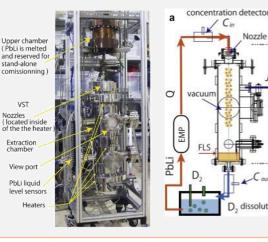
Tritium handling and management is one of the biggest challenges in fusion plants.


Requirement:

- Continuous operation under high tritium area
- Tritium breeding
- Effective extraction of Tritium •
- Low permeability of Tritium
- Low tritium circulating quantity

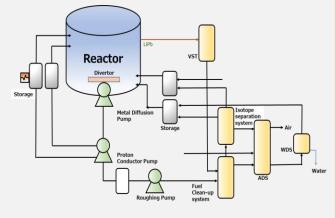
Key2: Plasma Exhaust

Fusion reactors require tritium compatible pumping systems to sustain a continuous burn of fusion plasma with fuel recirculation.


KF Capabilities: Tritium compatible pumps and optimized design of new plasma exhaust components.

Key①: Tritium Extraction from Liquid Metal Loop

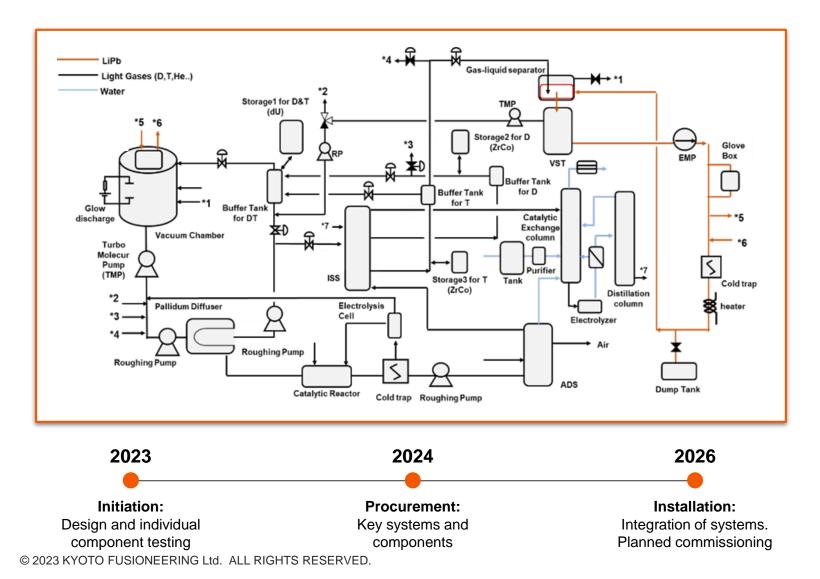
Tritium extraction from liquid breeders is one of the biggest issues to sustaining a continuous burning fusion plasma, as it is critical for supplying fuel.


KF Capabilities: Extensive experience in handling tritium extraction from liquid breeders. Demonstration in UNITY-2.

Key3: Overall Fuel Cycle Design

Tritium fuel cycle desian needs to be both safe and affordable to sustain fusion reactor operation.

KF Capabilities: Optimized and cost competitive design for fuel cycle system by professional experience and knowledge. UNITY-2 design underway.



Tritium compatible dry vacuum pump system is now ready to serve. For wet wall chambers, liquid metal diffusion pump is developed and reported. © 2023 KYOTO FUSIONEERING Ltd. ALL RIGHTS RESERVED Confidential | 18

UNITY-2 Overview

Fully integrated DT fuel cycle including breeder interface and effluent control Will be developed, demonstrated and provide its technology for pilot plants.

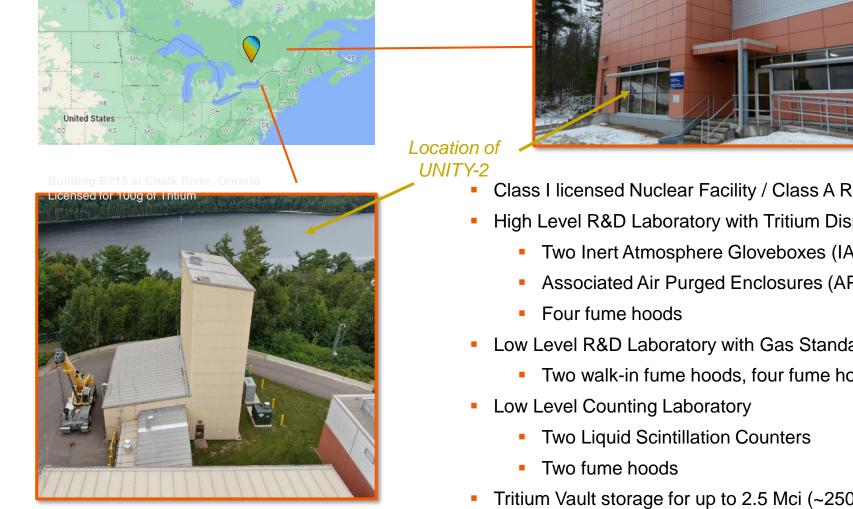
Location: Chalk River, Ontario

Components:

- Tritium Extraction System to be tested with Tritium (~50 L Li-Pb loop)
- Fusion reactor conditions for vacuum chamber (including PEG gases)
- Dual storage system (dU, ZrCo)
- Dual ISS (TCAP, CD)
- Outer cycle included (WDS, ADS)
- Centrifugal Pellet Injection

Tritium:

- Under review, 10 to 40 g inventory
- Fuelling of vacuum chamber at ~2.6 Pa m³ / s


Modelling:

- Dynamic fuel cycle modelling
 - Coolant/breeder inventory
 - Pumps, Pd diffuser, getter beds, DT delivery mechanism

UNITY-2 is constructed under a collaboration with Canadian National Laboratory

KYOTO FUSIONEERING

UNITY-2 will be housed in CNL's existing Tritium Facility at Chalk River Laboratories, Ontario.

- Class I licensed Nuclear Facility / Class A Radioisotope Laboratory
- High Level R&D Laboratory with Tritium Dispensing capability
 - Two Inert Atmosphere Gloveboxes (IAGB) one with THA
 - Associated Air Purged Enclosures (APE)
- Low Level R&D Laboratory with Gas Standards Preparation
 - Two walk-in fume hoods, four fume hoods and 2 APE

Tritium Vault storage for up to 2.5 Mci (~250 g) of tritium

KF is an enabler for all fusion energy through Developing critical technologies, System Integration for Fusion pilot plant, and Organizing fusion supply chain for commercialization.