First experimental demonstration of <u>magnetized fast isochoric heating</u> = MFI =

ILE, Osaka

MFI

ICF

MCF

Shinsuke FUJIOKA (Institute of Laser Engineering, Osaka Univ.)

<u>Critical problems in FI</u> There are three critical problems in the fast-isochoric heating. Too energetic and diverging electron are accelerated to heat a fuel.

Fuel compression by multiple ns beams

Heating by ps beams

Ignition & burn

Scattering --- Electron beam is scattered in ionized high-Z cone tip.
Diverging --- Electron beam have a large divergence angle (> 100 deg.).
Energy flux of the REB decreases significantly during transport.
Unstoppable --- Too energetic electrons are generated by laser-plasma interactions in a long-scale under-dense plasma.

Summary

- "Fusion" between magnetic confinement of an energetic electron beam and inertial confinement of a fuel leads to efficient laser-to-core energy coupling.
- 8% of the laser-to-core coupling was achieved by using the MFI scheme even with a small pre-compressed core ($\rho R \sim 0.1 \text{ g/cm}^2$).
- Energy density increment was 1 Gbar (= 50 J in 100- μ m-spherical volume).
- 15% is achievable with a 0.3 g/cm² core based on a simplified estimation.
- We hope to conduct a scale-up experiment in the US facilities (OMEGA & NIF).

B-field generation for MFI scheme

Laser-produced magnetic field was used

to guide the diverging electron beam to a fuel core.

[#]H. Daido *et al.*, PRL (1985), C. Courtois *et al.*, JAP (2005). *S. Fujioka *et al.*, Sci. Rep. (2013), K. Law *et al.*, APL (2016).

Guiding of REB by the external B-field Guiding of the diverged REB by laser-driven magnetic field was demonstrated in a planar geometry.

ILE, Osaka

40

-40

-20

 $X [\mu m]$

20

40

Z [µm] $22 \ \mu m$ 20

Cu-doped solid ball were used in integrated experiment

for visualization of energy-deposition and measurement of temperature.

Peak normalized

Photon energy [keV]

Efficient laser-to-core coupling (~8%) was achieved even with a relatively small ρR core (~ 0.1 g/cm²) by application of external *B*-field.

1600

1.3 1.4 x10¹⁹

1.2

<u>Cu-Kα spectra</u> Dependence of laser-to-core coupling Laser energy [J] 4 x10¹³ • 600 800 1000 1200 1400 Heating with B-field Heating without B-field Laser-to-core coupling efficiency [%] Photon number [photons/keV/sr] ····· Compression only No B-field applied & Open-tip cone B-field applied & Closed-tip cone 8 3 B-field applied & Open-tipe cone 6 2 4 40547 40545 40463 2 7.95 8.00 8.15 8.05 8.10

> Laser intensity [W/cm²] **Fusion Power Association 2017**

0.6

0.7

0.8

0.9

1.0

1.1

0.5

REB energy deposition in the shocked region and the far edge of the core was clearly enhanced in the magnetized core.

S. Sakata et al., submitted.

Fusion Power Association 2017

Summary

- "Fusion" between magnetic confinement of an energetic electron beam and inertial confinement of a fuel leads to efficient laser-to-core energy coupling.
- 8% of the laser-to-core coupling was achieved by using the MFI scheme even with a small pre-compressed core ($\rho R \sim 0.1$ g/cm²).
- Energy density increment was 1 Gbar (= 50 J in $100-\mu$ m-spherical volume).
- 15% is achievable with a 0.3 g/cm² core based on a simplified estimation.
- We hope to conduct a scale-up experiment in the US facilities (OMEGA & NIF).

Integrated experiments of MFI scheme X-ray spectrum indicates that a part of the core is heated up to 1.7 keV by relativistic electron beam.

X-ray spectrum from heated core plasma (heating pulse was shot @ ~350 ps before maximum compression) 50 x10¹² Cu-Ka Cu Li-like Cu Hea satellite X-ray photon flux (photons/sr/keV) 30 Energy coupling increased Au L **X**B Ï w/ B-field 20 1090**J** w/o B-field (40547)**T** increased 10 890J (40545)Mar Mar Mar $-u/\sqrt{-u}/\sqrt{-1}/\sqrt$ Ω 8.0 8.4 8.6 8.2 Photon energy (keV)

Fusion Power Association 2017

S. Lee *et al.*, in preparation.

Fast Ignition Realization EXperiment (FIREX) project in JAPAN

We have conducted series of fundamental experiment to solve the critical problems as obstacles to efficient laser-to-core coupling of the electron-driven fast heating, *i.e.* "generation of too energetic electrons" and "large beam divergence", and so on.

- Lowering the electron energy → reducing generation of pre-plasma by improving the contrast ratio of the heating laser 10⁷ → > 10⁹
- Reducing the beam divergence \rightarrow beam guiding by externally applied magnetic fields.
- Reducing the loss during propagation of electron beam \rightarrow introduction of open-tip cone.
- Stable core formation → introduction of solid ball targets instead of spherical shell targets.

Integrated experiments in 2016 followed by the fundamental experiments demonstrated ~8 % of the laser-to-core coupling (0.3 - 0.4 % in 2013), 1 Gbar of the energy density increment, and 1.7 keV of the heated core temperature (not detected in 2013).

MFI process

The external magnetic field is applied to the "insulator" fuel before the compression beam irradiation.

14

S. Sakata *et al.*, in preparation.

Raw monochromatic Cu- $K\alpha$ (8.05 keV) image from the core

Integrated experiments of MFI scheme Core-to-fuel coupling degrades gradually by increasing laser energy (= laser intensity with unchanged pulse duration and spot size).

S. Sakata et al., in preparation.

Shot ID	А	7 _{REB1} [MeV]	<i>Т</i> _{REB2} [MeV]	Cu- <i>Kα</i> yield [J/phton/sr] x10 ¹¹	Deposited energy [J]	Heating Laser Energy [J]	Tip	B-field application	Laser-to-core coupling [%]
40545	0.881	1.0	4.7	5.6	28	899	Open	No	3.1 +/- 0.5
45041	0.951	0.7	4.4	5.5	28	683	Open	No	4.2 +/- 0.7
40558	0.956	4.6	23.6	12	49	1516	Open	Yes	3.2 +/- 0.6
40556	0.933	2.2	5.4	10	50	1016	Open	Yes	4.9 +/- 0.8
40547	0.907	1.6	2.8	13	71	1100	Open	Yes	6.5 +/- 1.1
40549	0.999	0.8	10	7.3	48	668	Open	Yes	7.2 +/- 1.2
40543	0.971	0.5	4.1	9.3	50	625	Open	Yes	8.0 +/- 1.4
40560	0.991	0.9	21.7	8.2	34	1523	Closed	Yes	2.3 +/- 0.4
40562	0.890	1.5	5.6	8.0	38	1378	Closed	Yes	2.7 +/- 0.4

Dependence on REB temperatures is considered.

Temporal change of core compressed under external magnetic field was measured with a flash x-ray backlighting technique.

Fusion Power Association 2017

Distance (µm)

* M. Dharma-wardana *et al.*, Phys. Rev. E (2006). Calculated 2D magnetic field profile (430 kA) **B-field strength (T)** B-field strength (T) (mn) (m/) 1000 1000 -distance С С С 100 100 -distan 200 10 10 100 800 1000 1200 1400 800 1000 1200 1400 600 Z-distance (µm) Z-distance (µm) $I_{\text{diff}} = \mu_0 \sigma$ **Electrical conductivity Diffusion spatial scale** Diffusion time scale 2 x 10⁶ S/m (**0.1 eV-gold**)* 7 μ m cone wall ~ 120 ps

Fusion Power Association 2017

Integrated experiments of MFI scheme

Magnetic field can penetrate into the 7 μ m-thick Au cone,

if the Au cone is heated to 0.1 eV by Eddy current induced by dB/dt.

