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Summary

Detailed measurements and better physics modeling  
will continue to lead the progress in laser direct drive.

The National Direct-Drive Inertial Confinement  Fusion 
(ICF) Program* is underway at the Omega Laser 
facility and at the National Ignition Facility (NIF)

• The 100-Gbar Campaign on OMEGA and the Megajoule Direct-
Drive Campaign at the NIF explore physics and technology
requirements for laser-direct-drive (LDD) ignition at the MJ scale

 – establish requirements for drive uniformity 

 – establish requirements for target uniformity

 – understand and improve laser coupling (wavelength detuning)

 – understand and mitigate the source of hot-electron preheat 
(mid-Z layers, m detuning)

 – continue to improve an understanding of LDD physics [1-D 
implosion campaign, shell release, shock timing, imprint 
reduction, high-energy-density (HED) material properties]

*V.N. Goncharov et al., Plasma Phys. Control. Fusion 59 014008 (2017) 
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Ignition condition

~ keV
cm
mg

R T 5hs 2# #t

Phs

Phs>Pth ~ 1 Ehs

* S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016).



The ignition condition defines an ignition boundary 
in velocity-convergence ratio (CR) parameter space
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Hot-spot self-heating in 
1-D is determined by

• Laser energy EL and coupling

• Implosion velocity Vimp

• Shell convergence CR (a, Vimp)

•	a = Pshell/PFermi Ignition 

 Phs > Pth

Vimp

CR

~1 MJ

~3.5 × 107 cm/s
Ti > 4 keV

20 to 25 for LDD at 1 MJ



Three-dimensional nonuniformity growth limits 
the achievable conditions at peak compression 
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Hot-spot self-heating in 
1-D is determined by 

• Laser energy EL and coupling

• Implosion velocity Vimp

• Shell convergence CR (a, Vimp)

•	a = Pshell/PFermi Ignition 

 Phs > Pth

Vimp

CR

Stability 
boundary

~1 MJ

~3.5 × 107 cm/s
Ti > 4 keV

20 to 25 for LDD at 1 MJ



Cryogenic experiments on OMEGA are designed 
to study ignition hydro-equivalence
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1-D Campaign
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Campaign

OMEGA, ~30 kJ  Vimp, CR, Phs—hydro invariants

1-D Campaign – R. Betti’s talk
(part of 100-Gbar Project)

• Relax a and CR, increase Vimp
to maximize yield (Y ~ V5

impCR2)

• Increase CR to find optimum
implosion (highest Phs or Px)

100-Gbar Campaign

• Indentify stability boundary and
cause (ablator nonuniformity,
imprint, power imbalance) 

• Indentify Pth boundary [implosion
physics campaigns: laser–plasma
interaction (LPI), materials
properties, preheat]

• Improve laser and targets



The National Direct-Drive ICF Program includes OMEGA 
and NIF experiments to study direct-drive target physics
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Shell velocity and shell convergence are inferred 
using self-emission and core-emission imaging
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*F. J. Marshall et al., Rev. Sci. Instrum. 88, 093702 (2017).
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The inferred hot-spot pressure increases 
with convergence up to CR = 17
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* S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016).
 ** CR = R0,inner/R17, R17 is calculated or measured radius of 17%
  contour of peak hot-spot x-ray emission at bang time.



Two categories of the performance 
degradation are identified
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• In-flight shell breakup
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radiation)—not
significant on OMEGA

I. Designs overpredict
the inferred convergence



Two categories of the performance 
degradation are identified
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Three-dimensional simulations show that the present 
level of illumination asymmetry is sufficient to match
the observed pressure reduction
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One of the main goals of the 100-Gbar Campaign is to quantify  
on-target intensity imbalance and improve it to 1% rms.
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Three-dimensional simulations show that the present 
level of illumination asymmetry is sufficient to match  
the observed pressure reduction
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The 100-Gbar and Megajoule Campaigns are developed
to address the physics uncertainties and quantify  
effect of nonuniformity
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Inadequate
physics models

Short-scale 
growth Preheat

HED physics campaigns

 – materials properties 
behind shocks

 – first-principle EOS, 
opacity, conductivities

Understanding LPI/coupling

– 61st tunable beam 
on OMEGA

– computational tools 
(LPSE, PIC)

Imprint campaigns

 – accurate imprint 
characterization 
(OHRV)

 – mitigation 
(high Z, foams)

Target debris

 – fill-tube project

 – target 
characterization

Hot-electron campaign 

 – hard x-ray 
emission from 
inner layers

 – competition 
between SRS and 
TPD (Megajoule 
NIF campaign)

I. Designs overpredict the inferred convergence

EOS: equation of state
PIC: particle-in-cell
OHRV: OMEGA high-resolution 

velocimeter
SRS: stimulated Raman scattering
TPD: two-plasmon decay



Increasing laser coupling is required for reaching 
ignition-relevant hot-spot conditions
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• Cross-beam energy transfer (CBET) in LDD reduces drive
pressure by 40% on OMEGA and by 60% on the NIF

• Phs ~ Pabl IFAR5/3 (in-flight aspect ratio)

• Current level of imprint and target debris limit IFAR
to ~22 (CR = 19) for a ~ 4  and to ~10 (CR = 15) for a ~ 2
on OMEGA implosions—reduction in adiabat does not
lead to higher convergence in current experiments

CBET is reduced by
– reducing laser beam relative

to target size*— Q4FY18 on OMEGA
– wavelength separation between

different beams*,** (Dm > 6 Å UV)—part
of Megajoule Campaign on the NIF
 – introducing bandwidth in each beam

  

Vimp

CR

Stability 
boundary

100-Gbar
Campaign

Phs > Pth (1 MJ)
~120 Gbar

*I. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012)
** J. Marozas et al., PRL, accepted for publication (2017)



LLE is engaging the community in addressing the grand 
challenge physics questions of ICF implosions
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• A set of high-priority physics questions is being
formed and distributed through the ICF and high-
energy-density-physics (HEDP) communities

I. Start-up phase and early shock transit Category

A. Understanding of early-time imprint growth Hydro
Atomic physics

B. Understanding the dynamics of phase transition
behind multiple shocks

HEDP
Hydro

C. Materials property gradients throughout multiple
materials in the shell behind decaying shocks

HEDP
Hydro

D. Interaction of multiple shocks with material
rarefaction/rarefaction in convergent geometry HEDP
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Summary/Conclusions

The National Direct-Drive Inertial Confinement  
Fusion (ICF) Program is underway at the Omega Laser 
facitily and at the National Ignition Facility (NIF)

• The 100-Gbar Campaign on OMEGA and the Megajoule Direct-
Drive Campaign at the NIF explore physics and technology
requirements for laser-direct-drive (LDD) ignition at the MJ scale

 – establish requirements for drive uniformity 

 – establish requirements for target uniformity

 – understand and improve laser coupling (wavelength detuning)

 – understand and mitigate the source of hot-electron preheat 
(mid-Z layers, m detuning)

 – continue to improve an understanding of LDD physics [1-D 
implosion campaign, shell release, shock timing, imprint 
reduction, high-energy-density (HED) material properties]

Detailed measurements and better physics modeling  
will continue to lead the progress in laser direct drive.




