DIII-D Research Goals: Develop the Physics Basis for ITER Q=10 and Future Steady-State Tokamaks

Pursue low torque, transient-free stable cores with high fusion gain Develop advanced current profiles for high β_N and high bootstrap fraction

Optimize H&CD for steady-state burning plasma operation

 ECCD, Helicon, and HFS-LHCD

Recent Super H-Mode Experiments Yield Large Gains in Fusion Performance

- Pedestal stability model led to Super H-mode development with high pedestal pressure and corresponding higher global energy confinement
- Super H-Mode experiments on Alcator C-Mod reached ITER-like record pedestal pressure (~80kPa) on last day of operations

D.N. Hill/FPA Symposium / December 2017

Super H-mode experiments on DIII-D yield equivalent Q_{DT} = 0.35

Stable Zero torque ITER Baseline Scenario Demonstrated for the first time in DIII-D

DIII-D discharges robustly simulate the first scenario in the ITER plan

- Matched ITER shape & q₉₅
- Achieved ITER required confinement H_{98v2}=1
- Obtained fusion gain factor sufficient for Q=10
- All at ITER-similar torque in repeatable conditions

Turco, APS 2017

US Contributions to ITER: Successful Test of Prototype Toroidal Interferometer Polarimeter on DIII-D

- Joint effort: UCLA-GA-PSI Two-color system (10.6μm and 5.2μm)
- Full-scale ITER prototype with 110m roundtrip path to DIII-D and back
- System includes matching 110 m reference leg
- Active feedback is used to maintain alignment

General Atomics Is Manufacturing the Coils for the ITER Central Solenoid

On-axis ECCD Maintains Performance of Steady-state Hybrid Scenario with Strike Point on Tungsten Rings

- Hybrid discharges feature broad current profile maintained by internal MHD
- β_N and energy confinement equivalent to all-carbon divertor shot
- ECCD applied on-axis
- No increase in core radiation

DIII-D Research Will Provide a Scientific Foundation for Mitigating the Risk of Uncontrolled Transients

Unique capabilities support science of disruption avoidance and mitigation

Mitigation: SPI & shell pellets **Diagnostics**

Explore and optimize ELM control solutions for ITER and steady state tokamaks

Disruption Mitigation Research Aims to Provide Robust Mitigation in ITER and Steady-State Reactor

Disruption Avoidance is critical to meeting ITER or reactor goals

- "Active" MHD spectroscopy/NBI feedback to avoid stability boundaries
- Active stabilization: RMP feedback + synchronized ECCD
- Real-time Prediction: Machine learning algorithms
- Off-normal supervisor algorithms for integrated control

Disruption Mitigation: Testing ITER-prototype shattered pellet injectors

- Injection Geometry: ITER-like shallow trajectory reduces SPI performance (similar to MGI)
- Now injecting multiple shattered pellets

Improved Understanding of Runaway Electron Generation and Dissipation Informs Mitigation Development

Gamma-ray Imager: Physics of RE growth and rapid dissipation

Synchrotron imaging shows RE interplay with MHD

Test advanced concepts: Inside-Out

New Power Supply from ASIPP Enabling Key Insights on ELM Suppression Physics

Expands spectral flexibility significantly

Reduced RMP threshold with n=2 + n=3

Fluctuation measurements are consistent with reduced pedestal gradients during ELM-free RMP and QH-mode operation

Large-Amplitude ELM Suppression Achieved in Fully Non-inductive Plasmas Relevant to the ITER SS Mission

Planned Upgrades Leverage Existing Capabilities To Advance Scientific Basis for Steady State Tokamaks

Scientific Exploration	Enabled by
Divertor model validation & optimization	Divertor mods and diagnostics
SS High beta, high bootstrap current	Co-counter Off-axis beam
Reactor-relevant current drive schemes	Top-launch EC, Helicon, HFS-LHCD
Reactor-relevant materials	Material Exposure, Migration
Electron heated regimes	10 gyrotron system
3d physics spectral flexibility (n=1-4)	New 3d coils and power supplies

DIII-D Will Develop a Scientific Basis for Boundary Solutions **Needed for Steady-State Reactors**

- Advance scientific understanding and predictive capability through key measurements and extensive model validation
 - Determine key dissipation processes
 - Resolve role of drifts and turbulence
 - Quantify role of neutrals and benefits of closure
 - Elucidate magnetic topology effects
- Develop advanced divertors compatible with high performance
 - Maximize heat flux dissipation without degrading core
 - Staged divertor concept tests

efforts: prediction and data analysis

Phase I of Planned Divertor Modifications Provided Data To Compare With SOLPS Simulation

- Baffled divertor with slanted sides traps recycled neutrals
- Reduced T_e and ion flux compared to open divertor
- Phase II will provide pumping and shape to integrate with AT core

DIII-D Utilizing Flexible Heating and Current Drive Systems to Develop Path to High β Steady State

- Move tokamak solutions from peaked to broad current profiles
 - $-\beta_N$ =5 potential with low disruptivity (High q_{min} scenarios)

Increased ECH Power Is a Critical Element to Advancing Studies Towards Reactor-Like Conditions

- Increased off-axis ECH power and balanced NBI to
 - Access low rotation, dominant electron heated regimes
 - Provide tearing mode control for disruption avoidance

Completing installation of new 1.5MW 117.5GHz
CPI gyrotron

- Replacement gryrotrons (3) (1MW 110GHz) CPI tubes
 - 10+ year productive lifetimes
- Expand system to advance AT and divertor program goals (10 tubes total)

DIII-D Proceeding with Tests of Three Transformational Current Drive Technologies

Top launch ECCD doubles efficiency

HFS LHCD in development

 Helicon ready to test physics of coupling at high power

DIII-D Proceeding with Tests of Three Transformational Current Drive Technologies

- Top launch ECCD doubles efficiency
 - Design with GA corporate funding

HFS LHCD in development

 Helicon ready to test physics of coupling at high power

DIII-D Proceeding with Tests of Three Transformational Current Drive Technologies

- Top launch ECCD doubles efficiency
 - Design with GA corporate funding

- Helicon ready to test physics of coupling at high power
 - Install 1MW launcher in FY19 (with ASIPP)
 - Klystron from SLAC (with NFRI/KSTAR).

HFS LHCD in development

DIII-D Proceeding with Tests of Three Transformational Current Drive Technologies

- Top launch ECCD doubles efficiency
 - Design with GA corporate funding

- Helicon ready to test physics of coupling at high power
 - Install 1MW launcher in FY19 (with ASIPP)
 - Klystron from SLAC (with NFRI/KSTAR).

- HFS LHCD in development
 - AT plasmas found compatible with low inner gaps ->

DIII-D Proceeding with Tests of Three Transformational Current Drive Technologies

Top launch ECCD doubles efficiency

Design with GA corporate funding

Helicon ready to test physics of coupling at high power

- Install 1MW launcher in FY19 (with ASIPP)
- Klystron from SLAC (with NFRI/KSTAR).

HFS LHCD in development

- AT plasmas found compatible with low inner gaps →
- Possible HFS test tile in FY18, completion after LTO3

Replica Launcher test April 2018

New M-Coil and 2nd Programmable Power Supply Expands Capability for 3D Studies and Transient Control

- Power supply enables control of
 - All 18 PF coils independently for advanced 2D shaping & divertor
 - Each I coil independently, Tor+pol spectrum simultaneously
- New 12 coil Midplane array opens vital new research capabilities*
 - Stronger drive for NTV and n=3 & 4 rotation, spectrum optimization

DIII-D Is Advancing the Scientific Basis for Magnetic Fusion Energy Supporting Successful Operation of ITER

DIII-D results are providing a strong foundation for successful ITER operation and its scientific exploitation

DIII-D is addressing foundational scientific questions for developing validated predictive simulation

New DIII-D capabilities will enable significant steps toward developing the solutions needed for future steady-state tokamak fusion reactors

