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Magnetized	Liner	Inertial	Fusion	(MagLIF)	relies	on	
three	stages	to	produce	fusion	relevant	conditions
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Magnetized	Liner	Inertial	Fusion	(MagLIF)	can	also	be	
studied	on	laser	facilities	such	as	Omega
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A	joint	collaboration	between	Sandia	and	Rochester	is	
exploring	magneto-inertial	fusion	science	&	scaling

Laser	Heating
• Elaser ~	2-6	 kJ	@.53μm
• TDT ~	0.2	KeV
• ωτ ~	2-5
• Research	on	Z,	ZBL,	
Omega,	Omega-EP

Implosion/stagnation
• Vimp~	 70-100	 km/sec
• PDT ~	5	Gbar
• Tion >	5	keV
• ωτ ~	200	(B~100	 MG)
• Research	on	Z,	Omega

Initial	 Conditions
• Be	liner
• ρDT~	1-4	mg/cc
• Bz0~	10-30	 T	(~0.1	
MG)

§ 80-TW,	20	MJ	
Z	pulsed	 power	facility

§ 1-TW,	multi-kJ	Z-
Backlighter laser	

§ 30	T	B-field	system	
(900	kJ	stored	energy)

Laboratory	for	Laser	Energetics

§ 60-beam,	30-TW,	30	kJ,	
OMEGA	laser	facility

§ 4-beam,	TW	to	PW,	
multi-kJ	OMEGA-EP	laser

§ 20	T	B-field	systems	
(200	J	stored	energy)

Sandia	National	Laboratories



We	have	verified	that	good	performance	 on	Z,	using	our	initial	
parameters,	 requires	 both	applied	B-field	and	 laser	heating
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Rochester’s	laser-driven	MagLIF uses	targets	10x	smaller	
than	Z	to	study	scaling	and	basic	physics	with	a	high	shot	
rate	and	good	diagnostic	access
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Coils: 4 turns per side
18 kV, 26 kA, Bz = 10 T

40 compression beams
14 kJ in 1.5 ns

Preheat beam
180 J in 1.5 ns
Starts at -1 ns

1 mm

CH cylinder 
filled with D2 gas



Rochester’s	laser-driven	MagLIF uses	targets	10x	smaller	
than	Z	to	study	scaling	and	basic	physics	with	a	high	shot	
rate	and	good	diagnostic	access
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Optimized beam 
configuration to drive 

cylindrical compression

Optimized preheating timing

Integrated experiments appear 
to show effect of preheating & 

magnetization



Last	year	we	reported	on	progress	using	a	new	laser	
protocol	based	on	phase	plates	and	lower	laser	intensity
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Old protocol
No DPP

New protocol
1100 µm DPP
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We	have	clarified	that	while	more	energy	is	coupled,	this	
protocol	also	injects	window	material	deeper	into	the	fuel
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We	have	also	shown	that	while	the	new	protocol	has	
produced	higher	yields,	its	reproducibility	is	a	concern
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z3040 Z3041 z3057
Laser 

energy 70 + 1460 J 73 + 1534 J 103 + 1283 J

YDD 4.1e12 ± 20% 3.2e11 ± 20% 2.0e12 ± 20%

Comments ~50% of 
clean 2D

Direct repeat 
of z3040. 

Co coating on 
LEH



Other	MagLIF configurations	can	also	have	variability
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§ Stagnations	structures	vary	between	experiments
§ Helices,	bright	spots

§ Yield	can	vary	an	order	of	magnitude
§ The	source	of	the	variations	is	poorly	understood

§ Laser	heating	variations	 (non-uniform	mix,	dust?)
§ Implosion	variations	 (too	high	convergence,	 3D	effects)



Data	indicate	a	trend	in	wavelength	and	amplitude	with	
aspect	ratio	(liner	thickness);	consistent	with	feedthrough
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Applying	a	dielectric	coating	to	the	outside	of	liners	
appears	to	enhance	implosion	stability	and	affects	the	
in-flight	mass	distribution
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Stagnation	data	appears	to	confirm	the	impact	of	dielectric	
coatings	improving	the	stagnation	uniformity	and	structure
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While	coatings	don’t	appear	to	improve	our	average	
stagnation	conditions,	they	do	appear	to	improve	our	
reproducibility
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DD/DT 62.5 63.4 56.4 60.8 6%

Tion (nTOF) 2.5 keV 2.2 keV 2.2 keV 2.3 keV 8%

Te (continuum) 3.0 keV 3.3 keV No data 3.15 7%



After	~1.5	years	of	work,	we	now	have	a	new	laser	pulse	
shape	that	more	gently	disassembles	the	window	and	
allows	the	density	to	drop	for	~20	ns
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Overlay	of	x-ray	and	and	optical	blast	wave	images	
illustrates	the	difference	in	the	laser	configurations
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1100µm Phase Plate
90 psi D2
Pre-pulse 80 J
Main pulse 1270 J
(X-ray image:  60psi, 60/1060 J)

1100µm Phase Plate
90 psi D2
“Foot”: 190 J
Main pulse 1230 J
Co-Injection 24 J

(D2 capability recently added)



The	MagLIF effort	has	a	lot	of	moving	parts	proceeding	in	
parallel,	which	are	being	integrated	in	2018-2020
§ We	are	advancing	new	hardware	

platforms	on	Z	capable	 of	
delivering	 higher	current	to	the	
targets	to	facilitate	 scaling	studies

§ These	 hardware	platforms	will	
allow	higher	magnetic	 fields,	
which	are	generally	predicted	 to
improve	performance	at	our	
present	 scales

§ Our	laser	capabilities	 have	been	 improved,	which	has	already	resulted	 in	
dramatically	 improved	laser	heating.	Work	will	continue	 on	these	 platforms	with	
an	emphasis	 on	heating	higher-density	 fills.

§ We	have	made	progress	 in	improving	the	stability	 of	our	stagnation	 plasmas,	
which	has	so	far	produced	more	reproducible	results.

§ Implementing	 higher	magnetic	fields	 and	higher	preheat	 should	 reduce the	
convergence	 ratio	of	our	implosions,	which	should	further	improve	stability.

§ Upcoming	Omega	MagLIF tests	will	 look	at	the	impact	 of	increasing	magnetization
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