

6-7 December, 2017

Japan's Perspective on Pathways and Technology Needs

QST Kenji Tobita

Overall picture of Fusion power development

Steps for fusion power realization

"Phased approach"

Commercialization

2nd Phase

Sci feasibility

JT-60

3rd Phase

Tech feasibility

ITER

BA & national programs

4th Phase

Tech. Demonstration Econ. feasibility

DEMO

Technology bases for DEMO

Timeline of DEMO development

Recent situation

 "Action Plan (AP) toward DEMO" was formulated to implement DEMOrelevant R&Ds in a coordinated way, being under authorization by the Fusion Sci. and Tech. Commission of MEXT.

AP defines the development timeline of 12 key technologies:

1. DEMO design

2. SC magnet

3. Blanket

4. Divertor

5. H&CD

6. Theory/ simulation

7. Core physics

8. Fuels system

9. Material codes & standards

10. Safety

11. Availability/ maintenance

12. Diagnostics and control

AP considers priority of tasks taking account of budget, resource, etc.

- → Large scale R&Ds (magnet, remote maintenance) will start after the completion of DEMO conceptual design (2025).
- → AP suggests to enhance DEMO design activity and to accelerate divertor study for a prospect for power exhaust in DEMO.

Example of Action Plan – DEMO Design

Black: Kick off of Items Red: Close of items

2015 2020~ 2025~ 2035~

DEMO Design	Conceptual design		Engineering design
	Establishment of phys.& eng. guideline		Site asses. Const. design Decision of site
	Definition of safety policy	Preparation for regulation of safety	Regulation and assess. for site safety
	Database(DB) of physics, engineering & materials		DB update w/JT-60SA & irrad. results
Concept & Construction plan	(15)S: Phys.& eng. guideline →(19) (15)S: Basic design of concept →(19) (16)S/TF: Fuel cycle strategy (17)Q/N/U/S: Integrated simulator	(20)S/D: Conceptual design →(26)> (26)> (26)	(27)D/S: Design of Demo core parts →(35)
	(18)S/D: Cost evaluation	(23)S/Q/F: Rev. of target plasma →(26)>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Equipment Design	(15)S/Q: Basic design of SC (19)S/Q: Demo TBM targets \rightarrow (19) (17)S/D: Equip. config. w/ BOP \rightarrow (19)	(21)S/D: Conceptual Design of BOP →(26)	(for site asses.) (27)D/S: Plant design, build.& Equip. →(31) (27)A/S: Regulation & standard →(31) (after decision of standard & site candidates) (32)D/S: Design plant/build./equip →(35)
Safety Policy	(16)S/D: Draft of safety policy →(19)	(20) S/D: Asses. of Safety aspect(20)S/D: Asses. of Safety aspect →(26) (20)TF/S: Draft for safety regulation →(26)	(27)G/TF: Safety regulation
Database of Physics, Engineering & Materials	(16)Q/U/F/S: Demo Phys. DB (16)Q/U/F/S: Eng. & Materials DB	>(26) >(26)	(27)Q/S: Update Eng.& materials DB →(31) w/ results of JT-60SA (32)Q/S: Update material DB →(35) w/ 14MeV heavy irradiation data

Responsibility: S - Special Design Team, Q - QST, N - NIFS, U - universities, D - manufacturing companies, G - Japanese Gov.

Recent situation

 "Action Plan (AP) toward DEMO" was formulated to implement DEMOrelevant R&Ds in a coordinated way, being under authorization by the Fusion Sci. and Tech. Commission of MEXT.

AP defines the development timeline of 12 key technologies:

1. DEMO design

2. SC magnet

3. Blanket

4. Divertor

5. H&CD

6. Theory/ simulation

7. Core physics

8. Fuels system

9. Material codes & standards

10. Safety

11. Availability/ maintenance

12. Diagnostics and control

AP considers priority of tasks, taking account of budget, resource, etc.

- → AP suggests to enhance DEMO design activity and to accelerate divertor study for a prospect for power exhaust in DEMO.
- → Large scale R&Ds (magnet, remote maintenance) will start after the completion of DEMO conceptual design (2025).

Prospects of Ongoing Projects

DEMO Design

National activity

- "Special Design Team" organized for all-Japan activity
- More than 80 members incl. industry

Design Team meeting (Rokkasho, July 2017)

BA activity

Joint work on common design issues on DEMO

DEMO Task meeting (Garching, June 2017)

Targets by 2025:

- Conceptual design of DEMO plant
- Specs of components and facilities
- Safety design
- Waste management scenario
- Define R&D needs in the next phase

Breeding Blanket (BB) technology

Views on BB technology

Challenging technology for DEMO

- ✓ Mass production (a set of BB: 1,150 modules, 1,600 tons)
- ✓ Fabrication, inspection and joint technologies
- ✓ Various material property database for design code and standard, and for lifetime evaluation of irradiated materials

Needs different level approaches for development

- ✓ System level T recovery, heat extraction
- ✓ Component level blanket, maintenance
- ✓ Element level structural material, breeder, neutron multiplier

Need to pursue intense study on BB technology from now

Approaches to establish BB technology

RAFM ingot

Welding test

Mater. properties

Small specimen fission-n irrad. testing technol.

Structural materials

Fusion neutron source

Conceptual design of A-FNS started on the premise of the 9 MeV acceleration in LIPAc of IFMIF/EVEDA.

Specs of A-FNS

40 MeV, 5 MW (CW) 7x10¹⁶ n/s, 10 dpa/fpy

Completion: ~2030

| Completion: ~2030 | Compl

JT-60SA

JT-60SA is being constructed under the BA activities as well as a national project.

Mission toward DEMO:

Develop steady state operation at $\beta_N > 3.5$

← DEMO requires "steady and stable operation"

Status:

Construction in progress, as planned

Schedule:

- Completion of construction: March 2020
- First plasma: Fall in 2020
- Heating experiments start in BA Phase II (2020-2025)

12 TF coils out of 18 installed

Summary

- "Action Plan toward DEMO" that defines the timeline of 12 key technologies, is under authorization by the Fusion Sci. and Tech. Commission of MEXT.
- AP contributes to implementing DEMO-relevant R&Ds in a coordinated way under the cooperation of QST, NIFS, universities and manufacturing companies.
- In addition to ongoing projects (ITER and BA), Japan plans to enhance DEMO design activity, BB-related R&Ds, A-FNS conceptual design.
- Large-scale R&Ds such as magnet and remote maintenance will start after the completion of DEMO conceptual design in 2025 and the definition of targets of the R&Ds.