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Case: The high magnetic field path is optimal to 
obtain our absolute science and energy goals

•  From plasma science viewpoint there are no serious 
“tradeoffs” in the design of your MFE burn/energy 
mission, you always maximize B field strength

•  Achieving high B field with electromagnets has 
fundamental science limits; understanding this 
evolving science allows us as plasma physicists how 
to best meet our science and energy missions
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Why now?

•  15+ years since we talked about this.. many of our younger 
scientists don’t recall key features of debate about the “tactics” 
involved in achieving burning plasmas.

•  And haven’t things changed meanwhile? 
!  In physics of plasmas, magnets, etc.
!  Or maybe we just have more experience & insight
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Volumetric fusion power density

β ≡ pth
pmagnetic

= pth
B2 / 2µo

 Pf ! 8 pth
2

 
βN = β q

5ε S κ( )

Troyon limit (tokamaks)
+

Pf ~ β
2B4

 
Pf ~

βN
2ε2S κ( )B4

q2

Generic

Tokamak

Troyon, Gruber Phys. Lett. 110A (1985)
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 Confinement: tokamak
•  Expressing confinement through “wind-

tunnel” dimensionless scaling laws

B τ ∝ ρ*
3.1β 0ν −0.35q95

−1.4κ 2.2

ITPA
Luce, Petty, Cordey PPCF 50 (2008) 

τ ~ R3.1B2.1

Extract R, B at
Fixed R/a

Petty
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Energy gain at fixed �
physics & shape parameters

B2

pth τ Ex = pth τ E

R2B2

R3.1B2.1

R2.7B3.5

R2.8B2.2

Generic

H98

Petty 

ISS04

R2B4

R3.1B4.1

R2.7B5.5

R2.8B4.2

Target Target
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High B (+ strong shaping) enables stationary 
pedestal with high absolute pressure

βN , Ped ≤
Δψ ped

5%
⎛
⎝⎜

⎞
⎠⎟

3/4~ Peeling-�
Ballooning�
Stability
Limit 

 
βN ~

pped
pmagnetic

q
ε

pped ≤
Δψ
5%

⎛
⎝⎜

⎞
⎠⎟
3/4 B2

q

B~5.7 T

Snyder et al NF 2011

Hughes APS 17
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Issue Scaling
Power density B4

Confinement (generic) R2 B2

Confinement (tokamak) R2.7 B3.5  (H98)
R3.1 B2.1  (Petty) 

Confinement�
(stellarator)

R2.8 B2.1

Gain R2-3.1  B4-5.5

Stable pedestal/I-mode ~ βN B2

Issue Scaling
Density (tokamak) R-1 B1

Density (stellarator) β B2.5 (burning)

Heat exhaust: min. fZ R1.3 B0.9 

Heat exhaust: q// B-1 (burning)

Runaway e- amp. exp (R0.28 / B0.3)

Synchrotron: runaways B2

Synchrotron:thermal ~B1.5

TAE n~B, vA~B

Am I happy or sad?

😀

😀

😀

😀

😀

😀
😀

😀

🤔

😀

😀

😀😀

🤔
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Issue Scaling
Power density B4

Confinement (generic) R2 B2

Confinement (tokamak) R2.7 B3.5  (H98)
R3.1 B2.1  (Petty) 

Confinement�
(stellarator)

R2.8 B2.1

Gain R2-3.1  B4-5.5

Stable pedestal ~ βN B2

Issue Scaling
Density (tokamak) R-1 B1

Density (stellarator) β B2.5 (burning)

Heat exhaust: min. fZ R1.3 B0.9 

Heat exhaust: q// B-1 (burning)

Runaway e- amp. exp (R0.28 / B0.3)

Synchrotron: runaways B2

Synchrotron:thermal ~B1.5

TAE n~B, vA~B

Am I happy or sad? I’m happier than before

😀

😀

😀

😀

😀

😀
😀

😀

🤔

🤔

😀

😀

😀

😀

1998
2008

2005

2010

2010-17

2005-17

2016



10Whyte, Case for High Field Fusion, APS 2017

Electromagnets & Tokamak plasmas: same physics

Ampere’s law

Force balance

Ohmic heating

 ∇x
!
B = µ0

!
j

 ∇p =
!
j ×
!
B

P =η j 2

B ~ j

pmagnet ~ B
2

Pmagnet ~ B
2
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As in toroidal plasma physics, aspect ratio 
is a critical  and complex optimization

x ≡ a
b

M = 2x +1
3(1− x)
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Simple toroidal “solenoid” to explore limits �
R=4 m,  A=4, B0=Bmax/2

B =
µ0 jZ∫ πR dR

2π R

Bmax = 0.3π j
MA/m2

x ≡ a
b
= 2
3

M = 2.3  
σ max[MPa]! M

Bmax
2

2µo
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LN-cooled copper + steel for stress loading�
Pulsed due to lack of active cooling

Bmax~22 TB0~11 T
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Superconductors: zero resistivity, but a 
restricted operating space in T, j and B
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Superconductors: critical current, �
at fixed T, depends on SC type and B 

Jc
Jc, 0

= B
B0

⎛
⎝⎜

⎞
⎠⎟

−α

Jc0 B0 α
Nb-Ti 103 5 3
Nb3-Sn 103 10 3

Fixed T

T~4 K,  B>B0
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Nb-Sn superconductors: �
B limited by critical current at T~ 4K

Bmax~12 TBmax~7 T

50% SS
22% cool
25% Cu
3 % SC

Coil Cross-section
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NAS study: Cryogenic Cu could study burning plasma 
science at 25x smaller volume than Nb3Sn

FIRE ITER
B (T) 10 5.3
R (m) 2.14 6.2

Q 10 10
τ / τCR > 1 > 1

Vp (m3) 30 800

pthτ E ~ R
2.7B5.5

Volume ~ R3~ 1/B5

25x
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Tactics?  High-B, compact was known to have 
~10-fold performance to cost ca. 1990 but pulsed

Compact Tokamak �
Ignition Concepts
J. Willis
J. Fusion Energy 1989
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High-Temperature (HTS) REBCO 
superconductors

Jc
Jc, 0

= B
B0

⎛
⎝⎜

⎞
⎠⎟

−α

Jc0 B0 α
Nb-Ti 103 5 3
Nb3-Sn 103 10 3
REBCO 2.5x103 5 0.6

T~4 K,  B>B0
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With HTS magnets, stress is the only limit " 
multiple design choices to achieve Bmax > 20T

Bmax~23T
B0 ~ 9.2 T

σmax ~700 MPa

ARC
B. Sorbom et al�
 FED 2015
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HTS magnets clearly change the tactical landscape 
for magnetic fusion

J. Willis J. Fusion Energy 1989

#  Diversification

#  Risk distribution

#  Speed
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Density: tokamak

n ≤ nGr =
I p
πa2

∝
S κ( )
q

B
R

JET 9 

Empirical Greenwald density�
is a disruptive limit in tokamaks

De Vries, et al. Nucl. Fusion 49 (2009) 
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Power exhaust: tokamak divertor Solutions

q// ∝ PSOL B / R
 
λq// ∝ ε ρpol ~1/ Bpoloidal

divertortargets

sc
ra

pe
-o

ff
 la

ye
r

radiating
divertor
plasma

λq//

PSOL

Prad ~ ndiv
2 fz F Te( )

ndiv ~ ncore
2

 
ncore ∝

S κ( )
ε

B
R

fZ ~ B
0.9R1.3

Required impurity
Fraction to Detach1

2M.L. Reinke.  Nucl. Fusion 57   (2017)        1Goldston et al PPCF 2017, APS17 

cZ ∝
PSOL
Bp fGr

2

Required impurity
Fraction to Dissipate
Psol in H-mode2


