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General Comments

* The enormous challenge of developing fusion energy
requires multidisciplinary science solutions involving
forefront researchers

* Much can be gained from interactions with the broader scientific
community; fusion materials & technology researchers typically
have strong connections to these communities

* Many of the critical path items for DEMO are associated
with fusion materials and technology 1ssues (PMI, etc.)

 Low-TRL issues can often be resolved at low-cost

* Alternative energy options are continuously improving
 Passively safe fission power plants with accident tolerant fuel that
would not require public evacuation for any design-basis accident

* Small modular fission reactors to minimize construction cost/
schedule overruns and “right-sized” for incremental power growth

* Low-cost solar (coupled with low-cost energy storage); distributed
: LuVSseoncentrated power production visions
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Baseload energy for the long run: What’s new with fission
reactor concepts?

- Small modular reactors to enable in-factory construction
(bigger is not necessarily better)

— Complexity of large fission construction projects often introduces
cost overruns; large fusion energy systems will also be susceptible
* Improved public safety & environmental attractiveness

— Zero Emergency evacuation planning zone region (No adverse public
consequences for design basis accidents)

— Deep burn fuel cycles/ closed fuel cycles (Reduced long-term
radiological waste disposal burden)
* Improved economic competitiveness
— LWRs: very high (>90%) and predictable availability
— High component lifetime (MTBF) and short repair times

— High thermodynamic efficiency for Gen IV concepts
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Fusion materials challenges and opportunities

- Challenges Increasing opportunities
_ for leveraging broader
— Plasma facing components mater. sci. community

* Will tungsten work?

— Tritium containment and online extraction/fuel
reprocessing

— Nonstructural materials lifetime in a DT fusion
environment

 Plasma diagnostics (optical fibers, electrical
insulators, etc.)

 Plasma heating feedthrough insulators

* Next generation magnet systems (insulation, HTC
superconductors)

* Ceramic breeders

— Structural materials
* T, sequestration in radiation-induced cavities

* |s there a viable option beyond 5 MW-yr/m2? (50 dpa)
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Yield Stress (MPa)

Development of Reduced Activation FM Steels

* USA, Japan, and European Union initiated development of RAFM steels in 1980s,
and came up with respective alloys such as 9Cr-2WVTa, F82H, and Eurofer97
(adopted in 1997). China, India, Korea, etc. started relevant R&D activities
afterwards.

 Despite comparable tensile properties as compared with the ASME codified Grade
91, RAFM steels have significantly lower creep strength at temperatures above
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Creelzp rupture behavior for TMT vs. conventional 9Cr
steels
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Creep rupture behavior for ODS vs. conventional 9Cr
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Effect of Initial Sink Strength on the Radiation Hardening
of Ferritic/martensitic Steels

Current Next-generation

700 steels —(TMT, ODS) steels
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Dramatic reduction in
radiation hardening occurs
when average spacing
between defect cluster nuclei
(dislocation loops, etc.) is
much greater than average
spacing between defect sinks

-1/3 -1/2
N >> Stot

loop

or equivalently,

Stot >> S

rad defects
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Materials-tritium 1ssues require additional investigation

* |dentification of a robust, efficient and economic method for
extraction of tritium from high temperature coolants

— Large number of potential tritium blanket systems is both advantageous
and a hindrance

» Current materials science strategies to develop radiation-resistant
materials may (or may not) lead to dramatically enhanced tritium
retention in the fusion blanket

— Fission power reactors (typical annual T, discharges of 100-800 Ci/GW.;
~10% of production) are drawing increasing scrutiny

 >70% of US reactor sites (>50% in last 10 years) have reported T, groundwater
contamination levels exceeding EPA safe drinking water limits*

— A1 GW, fusion plant will produce ~10° Ci/yr; typical assumed releases are
~0.3 to 1x10°Ci/yr (<0.01% of production)

— Nanoscale cavity formation may lead to significant trapping of hydrogen
isotopes in the blanket (and FW/divertor) structure
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H retention increases dramatically in the presence of

cavity formation
3 to 5x increase in retained hydrogen when cavities

=> Fusion may need to
avoid operation at
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Notional operating temperature windows for ferritic
martensitic steels 1n fusion reactors

Potential impact of T2 sequestration
Traditional operating window '

—~ 500 ~ 9500
S O
° °
= S
"é 400 L "é' 400
o] . g
= . s : /
'*% // % % | % ‘— : ////%a _
£ 200 ////% %% %% | Eo00} ///@

0 50 100 150 200

Dose (dpa)

Zinkle & Ghoniem Fus. Eng. Des. 51-52 (2000) 55;
A. Hishinuma et al. J. Nucl. Mat. 258-263 (1998) 193

1 meUUNIVERSITYos TENNESSEE BI
KNOXVILLE




Concluding Comments

* Multiple options are available for high performance
structural materials for nuclear environments

* High confidence of suitability for fission neutron environments
* Uncertain suitability of FM steels for fusion beyond ~5 MW-yr/m?

 Potential impact of tritium retention in cavities needs to be assessed
(requires systems-level analysis for specific blanket concepts)

Many of the critical path items for DEMO are associated
with fusion materials and technology 1ssues (PMI, etc.)

e Low-TRL issues can often be resolved at low-cost

Alternative energy options are continuously improving

* Passively safe fission power plants with accident tolerant fuel that
would not require public evacuation for any design-basis accident

* Lower-cost solar, wind (coupled with lower-cost energy storage)
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Effect of irradiation temperature on H trapping in neutron
and 10n 1rradiated tungsten

H trapping at irradiation defects is enhanced for irradiation at temperatures where
cavity formation occurs (500°C vs. 200°C)
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Does the mainstream approach for designing radiation

resistance cause unacceptable trititum sequestration in DT
fusion energy structures?
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