US Contributions to ITER Physics

C.M. Greenfield
Director, US Burning Plasma Organization

presented at the
Fusion Power Associates
38th Annual Meeting and Symposium

December 7, 2017
Washington, DC

http://burningplasma.org

This work is supported by the US DOE under DE-FC 02-04ER54698.

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
The US Fusion Energy Sciences Community is actively working to ensure a successful ITER research program

- **Device design is mostly settled, with a few areas still needing attention**
 - Disruption prediction, avoidance, and mitigation
 - ELM suppression or mitigation
 - Requirements for error field correction coils
 - The US community has always been proactive in addressing new questions as they come up (helium operation, test blanket modules, etc.)

- **The emphasis is gradually moving from “how to build it” to “how to operate it”**
 - Controlling a burning plasma
 - Preparing burning plasma relevant operating scenarios
 - Predicting the boundary heat flux
 - Energetic particle behavior
 - Measurement in a burning plasma environment

ITER is not a diversion detracting from our research program, rather it inspires us to address issues that must be considered to successfully proceed to a burning plasma step
ITER physics tasks are a communal responsibility (all seven parties)

- Usually identified by ITER Organization
 - Could be addressed through ITPA
 - Could be organized directly with individual facilities
- Communication with ITER Science and Operations Division has been excellent
 - We expect this to continue under new leader Tim Luce (formerly of GA)
- In many areas, different facilities/parties work together
 - ITER personnel frequently participate

ITER physics tasks are often carried out in a collaborative manner, crossing borders between partners. This talk focuses on work done by and in the US FES community.
The US Fusion Energy Sciences Community is actively working to ensure a successful ITER research program

- **Device design is mostly settled, with a few areas still needing attention**
 - Disruption prediction, avoidance, and mitigation
 - ELM suppression or mitigation
 - Requirements for error field correction coils
 - The US community has always been proactive in addressing new questions as they come up (helium operation, test blanket modules, etc.)

- **The emphasis is gradually moving from “how to build it” to “how to operate it”**
 - Controlling a burning plasma
 - Preparing burning plasma relevant operating scenarios
 - Predicting the boundary heat flux
 - Energetic particle behavior
 - Measurement in a burning plasma environment

ITER is not a diversion detracting from our research program, rather it inspires us to address issues that must be considered to successfully proceed to a burning plasma step
2016 FES Joint Research Target: Explore disruption avoidance and mitigation

Mitigation techniques inject particles into plasma to radiate away energy content
- MGI: Massive Gas Injection
- SPI: Shattered Pellet Injection

- Compared MGI mitigation of “sick” and “healthy” plasmas (C-Mod, DIII-D)
- Tested and installed 3 ITER-like MGI valves (NSTX-U)
- Runaway physics studied (C-Mod and DIII-D)
- Develop and install multi-machine disruption warning algorithm (NSTX/NSTX-U)
- Explored advanced MHD control techniques (DIII-D)
Shattered Pellet Injection (SPI) selected as ITER’s day 1 DMS

- **Wine-bottle-cork-scale pellet fired into the tokamak, shattering on the way in**
 - Tested with D$_2$ and Ne (high-Z better)

Recent results (PRELIMINARY)

- **Shallow (ITER upper port) trajectory reduces SPI effectiveness vs. core directed injection**
- **Effectiveness of multiple SPI depends on injection timing**
 - 2nd smaller pellet leads to less radiation than single large pellet
 - New experiment with two identical 400 torr-L pellets performed, results pending interpretation
- **Work is continuing...**
Collaboration on JET Shattered Pellet Injector will inform ITER disruption mitigation requirements

Status of U.S. Contributions

- D pellet injector from ORNL tested successfully
- Mechanical punch designed to dislodge high-Z pellets in the largest barrel requires further development, works in the two smaller barrels
- Cold zone for large barrel may be reduced to achieve desired performance
- Shipment to JET is imminent

Also being deployed in J-TEXT, HL-2A, MST

JET SPI has ITER-like 3-barrel injector and injection trajectory

Large Collaborative effort involves JET/EUROfusion, ORNL, USIPO, ITER Org, EC, and US DOE
Alternative DMS approaches under study

- ITER DMS can be upgraded if better alternatives are available and developed to maturity by ~2029
- Two options currently under study in the US

Low-Z dust-filled shell
(N. Eidietis, GA)

"Inside-out" thermal quench mitigation + stochastic runaway electron deconfinement & high n_e suppression + maintains moderate current quench rate

Electromagnetic Particle Injector
(R. Raman, U Washington)

Rapid delivery of impurities deeper into the plasma with fast time response
Prototype tested, time response and velocity consistent with predictions

![Diagram](image-url)
Disruption Event Characterization and Forecasting
innovation to enable disruption avoidance

Automated disruption event chain analysis

- Physics-based disruption forecasting models begun
- Prediction quantitatively compared to experiment
- Collaborative (inter)national multi-device studies starting (incl. NSTX/-U, KSTAR, DIII-D, TCV)

Disruption forecasting

Global kinetic MHD mode growth

Analysis aimed to cue disruption avoidance systems
- Physics-based disruption forecasting models begun
- Prediction quantitatively compared to experiment
- Collaborative (inter)national multi-device studies starting (incl. NSTX/-U, KSTAR, DIII-D, TCV)

DECAF code

ELM control with magnetic perturbations produced by internal coils is planned for ITER

Resonant Magnetic Perturbations (RMP)

- Full suppression demonstrated on ASDEX-U through collaboration with DIII-D
- Result on DIII-D suggested lower collisionality on AUG is key
- Follow on experiment on AUG achieved ELM suppression
- Encouraging result for ITER
Multi-mode RMP lowers threshold current for ELM suppression in DIII-D

- Multi-mode RMP with mixed $n=2$ and 3 lowers total coil current to access ELM suppression compared with pure $n=3$ case

- Maximal current
 \[2.28 + 0.87 = 3.15 \text{kA} < 3.50 \text{kA}\]

- \(\propto \) Energy\(^{1/2}\)
 \[(2.28^2 + 0.87^2)^{1/2} = 2.44 \text{kA} < 3.50 \text{kA}\]

Multi-spectral tailoring of applied field made possible by new power supplies from ASIPP/EAST
Does ITER need to rotate the RMP perturbation?

- Heat (IRTV) and particle flux (Fastcam visible imaging) splitting measured in DIII-D RMP ELM suppressed discharges with ITER similar shape and operating conditions shows
 - clear splitting in particle flux
 - no clear splitting seen in heat flux

Divertor strike point particle flux splitting exceeds vacuum predictions by 3x-5x
- challenges linear plasma response models which result in predominantly screening

- Partial HFS strike point heat flux detachment achieved with mid-Z puffing.
 - RMP ELM suppression maintained over wide range of collisionalities

R. Moyer, D. Orlov (UCSD)
ELMs Eliminated in EAST Using PPPL Impurity Dropper in Scenarios with Tungsten Divertor

R. Maingi, Nucl. Fusion (2017) submitted

ELMs suppressed
On-going effort to predict error field (EF) tolerance of ITER operation (MDC-19)

- Using 3D MHD response metrics
- Resonant n=1 EF criterion (2017):
 \[(\delta B/B_T)_{pen} = 0.0006(n_e)^{1.3}B_T^{-1.7}R_0^{0.7}\beta_N^{-0.78}\]
- New resonant n=2 EF criterion is due on 2018 March ITPA MHD meeting
- Two more EF criteria on NTV and heat flux splitting are under investigation

MDC-19 will provide final report and recommendation for 3D coils by 2019, based on each EF correction capability

- In particular, on top and bottom ex-vessel coils (EFCT, EFCB), which are found 10 times less efficient to control n=1,2 resonant fields

Error field penetration thresholds vs. density

10 times higher currents are required to avoid EF-resonant disruption when using EFCT/B

J.-K. Park, et al.
The US Fusion Energy Sciences Community is actively working to ensure a successful ITER research program.

- **Device design is mostly settled, with a few areas still needing attention**
 - Disruption prediction, avoidance, and mitigation
 - ELM suppression or mitigation
 - Requirements for error field correction coils
 - The US community has always been proactive in addressing new questions as they come up (helium operation, test blanket modules, etc.)

- **The emphasis is gradually moving from “how to build it” to “how to operate it”**
 - Controlling a burning plasma
 - Preparing burning plasma relevant operating scenarios
 - Predicting the boundary heat flux
 - Energetic particle behavior
 - Measurement in a burning plasma environment

ITER is not a diversion detracting from our research program, rather it inspires us to address issues that must be considered to successfully proceed to a burning plasma step.
US contributions to ITER control

- Development of ITER-relevant controls on US tokamaks
 - Plasma shape, current, & vertical position control
 - Non-axisymmetric (e.g., RWM, NTM) stability control
 - Current profile control
 - ELM control
 - Off-normal event detection and handling
 - Divertor control
 - Alfvén Eigenmode control

- Participation in design of ITER real-time framework and PCS

- Support for development of ITER Plasma Control System Simulation Platform (PCSSP)
 - PCSSP is a software platform for development and validation of ITER PCS
Effective remote experiments demonstrated during EAST 3rd shift operations

Scientific Achievements in 2017:

- Remote technology challenges addressed (audio, data transfer)
- Four expt’s carried out over 5 shifts (1 wk)
- New EAST capabilities demonstrated
 - Divertor detachment
 - Fast rampdown without disruption
- Prototype for remote participation in ITER
- Remote control rooms now available at
 - GA (EAST, KSTAR)
 - PPPL (KSTAR, W7-X)
 - MIT (in preparation)
Modeling framework aims to accelerate ramp-up scenario and control development

TOKSYS: Matlab code used to develop actuator and plasma models for testing PCS algorithms (supported by GA)

Two major development efforts
- Design and validate plasma model using experimental data and simulations (i.e. TRANSP, DCON)
- Develop non-linear models and/or switching between linear models
 - Flattop modeling typically uses linearized model around a reference case

Ultimate goal: develop, test and optimize scenarios and control in the ramp-up phase in offline simulations
Update and reanalysis of international H-mode database for ITPA Transport and Confinement TG

- Add data closer to ITER baseline conditions + hybrids, including data from high-Z wall devices
- Expand parameter range and explore new variables (torque, $n_{e,SOL}$ and $n_{e,sep}$, improved fast ion content)
- Separate core and pedestal scalings, provide a more realistic density dependence
- 2 devices included so far: JET and ASDEX-Upgrade
 - AUG: 613 W-wall ITER baseline discharges
 - JET: 630 data points with ILW

S. Kaye, PPPL
Stable zero-torque ITER Baseline Scenario discharges achieved

\[\beta_N, I_N, H_{98y2} \]

\[n_e \left(10^{19}/m^3\right) \]

\[\tilde{B}(n=1) \quad (G) \]

\[I \quad (MA) \]

\[\ell_1, \text{Div. } D_\alpha \quad (\text{a.u.}) \]

\[P_{NB} \quad (MW) \]

\[f(q=2) \quad (kHz) \]

\[T_{NB} \quad (Nm) \]
Experiments in DIII-D have applied ELM suppression to a high-β, fully noninductive scenario

High power, high-β hybrid scenario

- \(n = 3 \) odd parity RMP excites edge kink modes that are marginally stable and amplifying
 - Benefits: modest RMP amplitude, wide \(q_{95} \) window, small effect on pedestal, ELM suppression at low rotation

- Integrated with Argon-based radiating divertor, reducing heat flux by 50%

- Scenario scales to steady-state in ITER with \(P_{\text{fus}} \approx 460 \text{ MW} @ Q_{\text{fus}} \approx 5 \) and \(H_{98y2} = 1.2 \) (further optimization possible)

C. Petty, IAEA16
Significant progress towards QH-mode startup with zero net NBI torque

- If QH-mode is to be used in future devices such as ITER, we need to demonstrate creation and sustainment with essentially zero NBI torque.

- Experiment in 2017 focused on reducing the input NBI torque needed for wide pedestal QH-mode:
 - Counter-I_p torque from NTV from nonaxisymmetric $n=3$ fields was used to supplement NBI.

- Time integrated torque needed for wide pedestal was reduced by 90%.

- Next issue to confront is locking of core tearing modes.

K. Burrell APS17
Super H-mode Scenario Sustained in DIII-D & Applied in C-Mod to Achieve ITER-level Pedestal

- **Sustained in DIII-D for 2.5s with H_{98} \sim 1.6**
 - RMP-ELM mitigation
 - $\beta_N \sim 2.9$, 1.9MJ, $\tau_E = 200$-600ms

- **Possible record DIII-D P_{ped} = 30kPa**
 - H_{98} reaches 2.5, $Q_{DT, EQUIV}$ reaches 0.35
 - On-axis n, T_i similar to ITER mid radii

- **Understanding applied to achieve ITER-level pressure pedestal in C-Mod**
 - Demonstration of Super H-mode benefits at higher field
 - World record pressure achieved in three scenarios: Super H, EDA H-mode, I-mode

- **May be applicable to other devices**

Snyder APS17, Hughes APS17
First and only λ_q measurements taken at ITER-level B_p in Alcator C-Mod

- No major departure from inverse poloidal field scaling
- H- and I-modes at similar poloidal field have similar heat flux widths: similar physics controlling for both?
- Heuristic Drift model agrees with C-mod λ_q, although C-Mod has largest deviation in multi-machine database
- XGC1 prediction for ITER are $10 \times$ wider than empirical trend - due to turbulence broadening
 - Basis for exascale simulations

New C-Mod data: D. Brunner, APS17
XGC1 calculations: S.-H Ku and C.S. Chang
Energetic particle behavior is becoming increasingly predictable

- Tangential 2nd neutral beam suppresses Global Alfvén Eigenmode (GAE) in NSTX-U
- **Consistent with HYM simulations**

E. Fredrickson, PRL (2017)

- HYM code: growth of n=10 counter-GAE from 1st NBI
- HYM: suppression of n=10 counter-GAE by 2nd NBI
- Most unstable n-number, mode ω consistent with HYM
Diagnostic development and exploitation is a strength of the present-day US Fusion Energy Sciences program

- Need to maintain leadership

New challenges for measurement

- Particle flux and fluence (neutrons, gammas, ions, neutrals)
- Very limited access (e.g. tritium blanket modules)
- Very long pulses and high duty factors
- Reliability, robustness, lack of maintenance
- Full set of real-time measurements
- Define minimal set of required diagnostic systems
- Develop and test new techniques

Follow-on devices (FNSF, DEMO,...) will be even more demanding

- All of the above - but more so
Prototype of ITER Toroidal Interferometer and Polarimeter (TIP) tested on DIII-D

Just one of many examples...

- Real-Time (1 kHz) control of density
- Crude density profiles
- Global constraints to Thomson scattering density profiles
- Measurement of density fluctuations from turbulence and coherent modes (0-1 MHz)
- Benefit of TIP: Recovery from temporary loss of signal
US Fusion Energy Science community is working with international partners to make ITER succeed

- The US community has been enthusiastic in its support of ITER physics
 - The US is responsible for 9% of ITER construction, but contributions to ITER science have far outpaced that number
 - The difficulty in preparing this talk was in deciding what to leave out
- Even eight years before ITER’s first plasma, the science is exciting and challenging

I would like to acknowledge the many contributions made to this talk by community members, and apologize for all of the material I had to leave out.