
# NEGATIVE TRIANGULARITY EFFECTS ON TOKAMAK MHD STABILITY

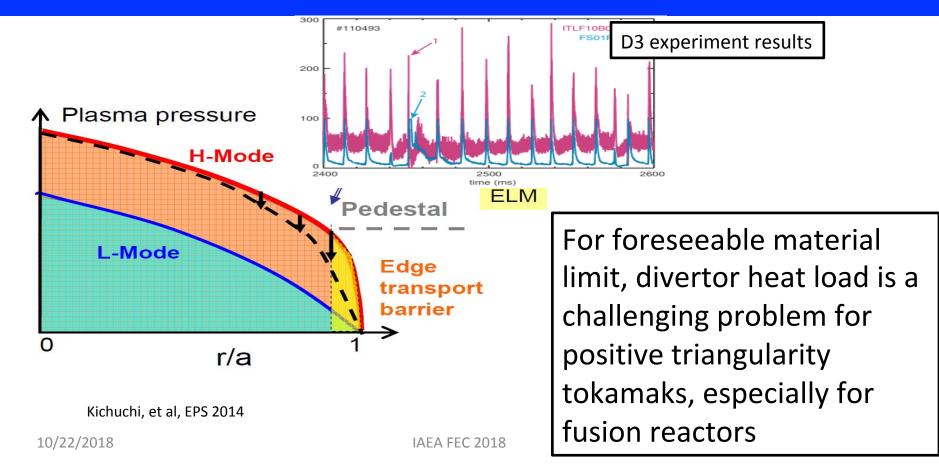
L. J. Zheng, M. T. Kotschenreuther, F. L. Waelbroeck, M. E. Austin, W. L. Rowan, P. Valanju, and X. Liu *Institute for Fusion Studies, University of Texas at Austin* 



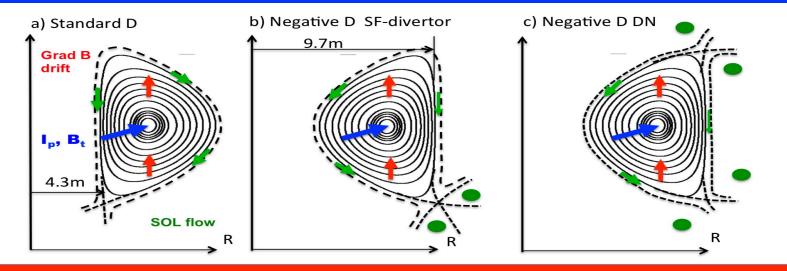
#### Negative triangularity tokamak:

- Not only good for divertor design
- But also good for MHD stability






INSTITUTE FOR FUSION STUDIES
THE UNIVERSITY OF TEXAS AT AUSTIN


- 1. Motivations: why negative triangularity
  - Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
  - ➤ H mode confinement is poor
  - L mode gets the H mode level confinement, beta limit is lower, but acceptable
- 3. Our NEW results: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
  - ➤ High beta confinement: 8-10 Li (I/aB), beta limit doubled for low n modes!
  - ELM free, no major concern about RWMs, kink disruption, etc.
  - Steady state confinement, "soft" beta limit (high n ballooning)
  - Experiments show low turbulence level
- Conclusions and discussion

- 1. Motivations: why negative triangularity
  - > Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
  - > H mode confinement is poor
  - L mode gets the H mode level confinement, beta limit is lower, but acceptable
- 3. Our NEW results: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
  - High beta confinement: 8-10 Li (I/aB), beta limit doubled!
  - ELM free, no major concern about RWMs, kink disruption, etc.
  - Steady state confinement, "soft" beta limit (high n ballooning)
  - Experiments show low turbulence level
- 4. Conclusions and discussion

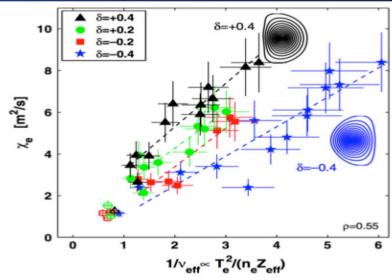
### H-modes are good, but ELMs are unacceptable



#### Non core-the-first design philosophy: Negative triangularity tokamaks (Kikuchi, et al.)



Original thoughts: Negative triangularity can gain for divertor design, but may give up in the beta limit


- a larger separatrix wetted area,
- wider trapped particle-free scrape-off layer,
- larger pumping conductance from the divertor room.

- 1. Motivations: why negative triangularity
  - > Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
  - ➤ H mode confinement is poor
  - ➤ L mode gets the H mode level confinement, beta limit is lower, but acceptable
- 3. Our NEW results: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
  - ➤ High beta confinement: 8-10 Li (I/aB), beta limit doubled!
  - ELM free, no major concern about RWMs, kink disruption, etc.
  - Steady state confinement, "soft" beta limit (high n ballooning)
  - Experiments show low turbulence level
- 4. Conclusions and discussion

#### Earlier TCV negative triangularity experiments

#### DIII-D Experiment Was Motivated by Results From TCV

- TCV saw x2 confinement improvement in negative  $(-\underline{\delta})$  over positive  $(+\underline{\delta})$  triangularity discharges
- Achieved H-mode confinement in L-mode discharge
- Saw reduced turbulence levels in neg. compared to pos.



Y. Camenen, Nucl. Fus. 2007



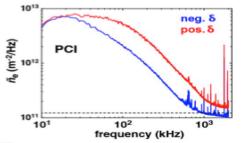
Initial Results from MP 2017-11-02: Transport Variation with Positive and Negative Triangularity

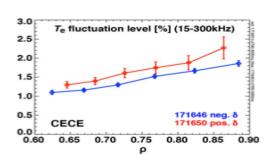
# Recent DIII-D experiments

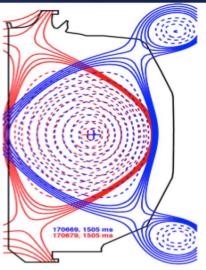
Presented by Max Austin

with

A. Marinoni, J.A. Boedo, M.W. Brookman, A.W. Hyatt, G.R. McKee, A.E. Neuman, C.C. Petty, T.L. Rhodes, K.E. Thome, M.L. Walker and the DIII-D Team


Present DIII-D I


### Summary: Negative Triangularity Discharges Created in DIII-D


Shot 166192 Time 3925 ms

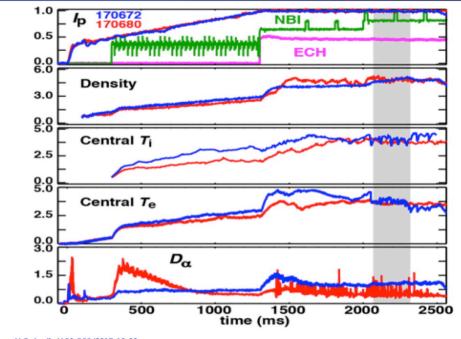
May 1

- Unconventional negative triangularity  $(-\delta)$  discharges have been created in DIII-D
- Compared to matching positive 5, they have reduced turbulence and transport







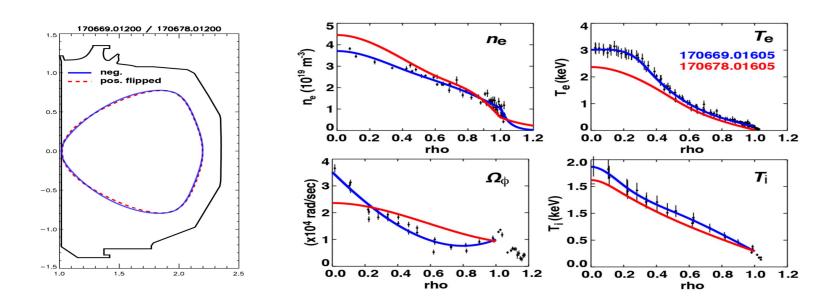



#### Important development of DIII-D experiment

#### $I_e = I_i$ case At High Beam Power, Compared Neg. $\delta$ L-mode and Pos. δ H-mode

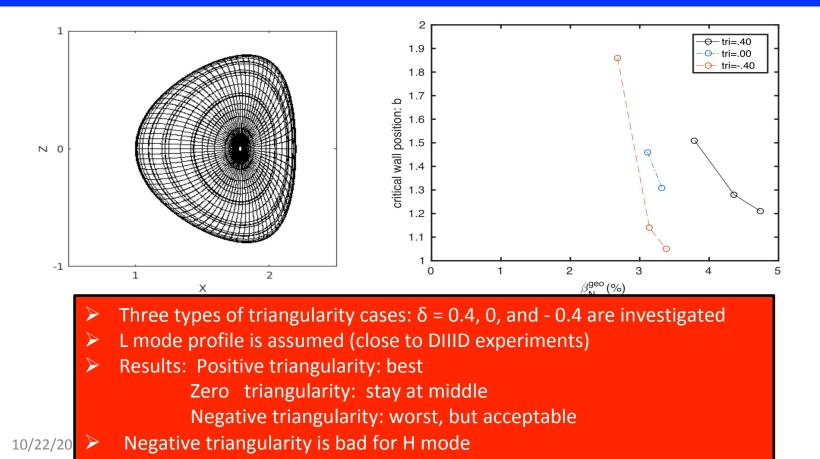
- Same heating trajectory both shapes
  - 7 MW NBI
  - 3 MW FCH
- Pos.  $\delta$  goes into ELMing H-mode at 1400 ms

> the H-mode-level confinement (H98yp=1.2) with L-mode-like edge behavior without ELMs



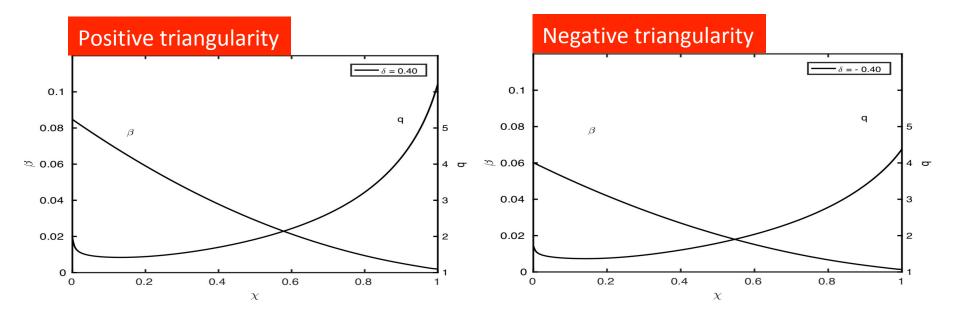






M.E. Austin/APS-DPP/2017-10-23

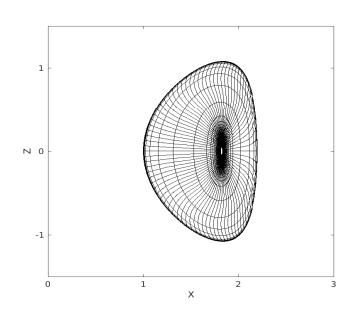
### Stability: DIII-D experiment interpretation

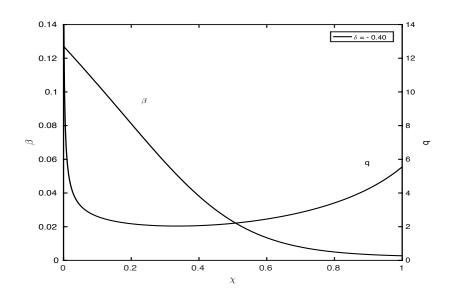



- Equilibrium: use the g file from experimental data reconstruction
- ➤ Ideal MHD Stability is confirmed with critical wall position 1.11, consistent with the D3D limiter experiments

#### Numerical exploration of D3D type of L-mode equilibria

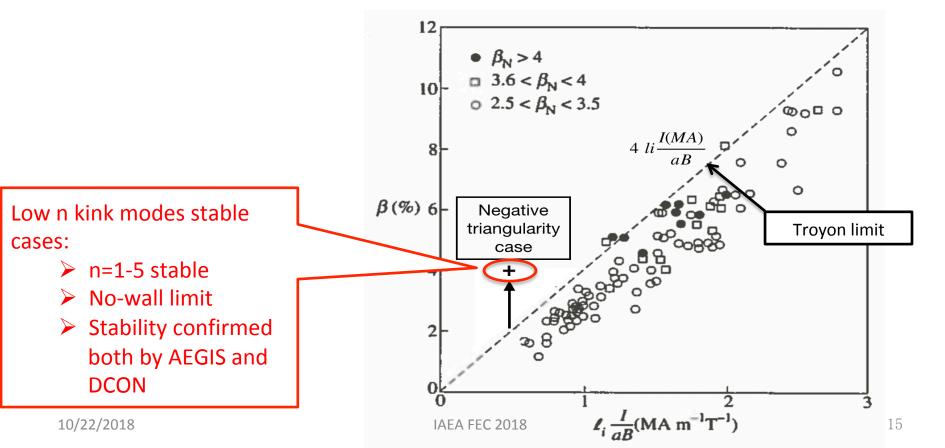



- 1. Motivations: why negative triangularity
  - > Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
  - > H mode confinement is poor
  - L mode gets the H mode level confinement, beta limit is lower, but acceptable
- 3. Our NEW results: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
  - ➤ High beta confinement: 8-10 Li (I/aB), beta limit doubled for low n modes!
  - ELM free, no major concern about RWMs, kink disruption, etc.
  - Steady state confinement, "soft" beta limit (high n ballooning)
  - Experiments show low turbulence level
- 4. Conclusions and discussion


# Profile comparison between positive and negative triangularity cases

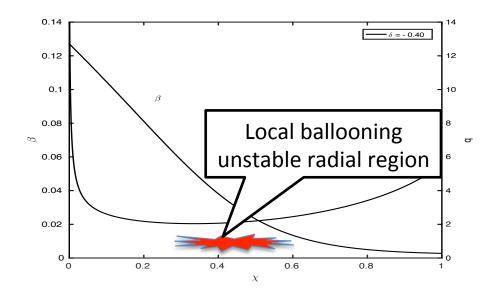


- Dbservation: the safety factor q at edge is smaller for negative triangularity case
- Motivate us to reduce the Ohmic current to consider the advanced tokamak scenario with high bootstrap current fraction


## Negative triangularity tokamak in advanced scenario with high bootstrap current fraction





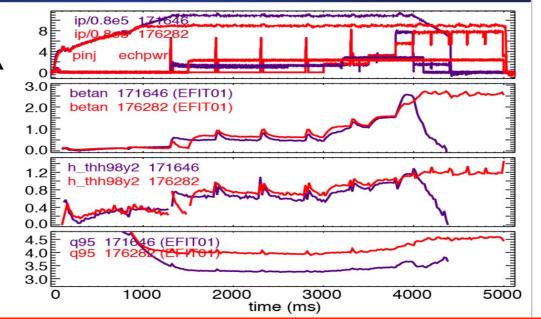

Given density and temperature profiles, the current is computed self consistently

# Low n (1-5) kink mode stability for negative triangularity tokamak in advanced scenario



# High n ballooning mode stability for negative triangularity tokamak in advanced scenario

- ➢ Because of peaked pressure profile, high n ballooning modes tend to give lower beta<sub>N</sub> limit: 4 li (I/aB)
- ➤ Further profile optimization is still in process




- ➤ High n ballooning mode theory keeps only lowest order, global calculation shows that the n=5-10 stability can be achieved.
- Possible FLR stabilization for high n modes
- "Soft" beta limit

### Further D3D experiments, guided by our calculations, yield interesting results based on the preliminary analyses

#### Shots with lower Ip did not exhibit reduced confinement

- Comparison of neg. triang., last year 0.9 MA, this year 0.75 MA
- H-factor higher for lower lp
- Tau\_e about the same



In the PT case, reducing current leads to the confinement time worsen ( $^{\sim}$ I/aB). In this D3D NT case, when the current is reduced,  $\tau_e$  remains unchanged --- good sign

- 1. Motivations: why negative triangularity
  - > Design philosophy prioritizes solution of divertor heat load issue
- 2. Concern about the MHD Stability of negative triangularity tokamaks
  - > H mode confinement is poor
  - L mode gets the H mode level confinement, beta limit is lower, but acceptable
- 3. Our NEW results: L mode with high bootstrap current fraction can achieve even higher beta than H mode in the positive triangularity case
  - High beta confinement: 8-10 Li (I/aB), beta limit doubled!
  - ELM free, no major concern about RWMs, kink disruption, etc.
  - Steady state confinement, "soft" beta limit (high n ballooning)
  - Experiments show low turbulence level
- 4. Conclusions and discussion

## Conclusions: Negative triangularity & L - mode & low I<sub>p</sub> and high bootstrap current

- The benefits of negative triangularity are not limited to divertor
  - NEW: negative triangularity also improves MHD stability
    - ✓ Steady state confinement with high bootstrap current fraction
    - ✓ ELM free
    - ✓ high resistive wall mode beta limit
    - ✓ Low n stability, reduce the kink type disruption possibility
    - ✓ soft instabilities (high n ballooning modes) to avoid high inevitable beta state, that eventually causing disruption, FLR stabilization? Global effects
    - ✓ Experiments already show a reduced anomalous transport