

First divertor physics studies in Wendelstein 7-X

Thomas Sunn Pedersen^{1,2}, on behalf of the W7-X team, in particular:

R. König¹, M. Jakubowski¹, Y. Feng¹, A. Ali¹, G. Anda⁶, J. Baldzuhn¹, T. Barbui⁵, C. Biedermann¹, B. Blackwell³, H.-S. Bosch¹, S. Bozhenkov¹, R. Brakel¹, S. Brezinsek⁴, J. Cai⁴, J.W. Coenen⁴, J. Cosfeld⁴, A. Dinklage¹, T. Dittmar⁴, P. Drewelow¹, P. Drews⁴, D. Dunai⁶, F. Effenberg⁵, M. Endler¹, J. Fellinger¹, O. Ford¹, H. Frerichs⁵, G. Fuchert¹, J. Geiger¹, Y. Gao⁴, A. Goriaev^{13,14}, M. Henkel⁴, K. Hammond¹, J. Harris⁹, D. Hathiramani¹, M. Henkel⁴, H. Hölbe¹, Y. Kazakov¹³, C. Killer¹, A. Kirschner⁴, A. Knieps⁴, M. Kobayashi¹¹; P. Kornejew¹, M. Krychowiak¹, G. Kocsis⁶, S. Lazerzon⁷, C. Li⁴, Y. Li⁴, Y. Liang⁴, S. Liu⁴, J. Lore⁹, S. Masuzaki¹¹, V. Moncada¹⁵, O. Neubauer⁴, T. T. Ngo¹⁶, H. Niemann¹, J. Oelmann⁴, M. Otte¹, V. Perseo¹, F. Pisano⁸, A. Puig-Sitjes¹, M. Rack⁴, M. Rasinski⁴, F. Reimold¹, J. Romazanov⁴, L. Rudischhauser¹, J.C. Schmitt⁷, G. Schlisio¹, O. Schmitz⁵, B. Schweer⁴, S. Sereda⁴, T. Szepesi⁶,Y. Suzuki¹¹, E. Wang⁴, Y. Wei⁴, U. Wenzel¹, S. Wiesen⁴, V. Winters⁵, T. Wauters¹³, G. A. Wurden¹⁰, D. Zhang¹, S. Zoletnik⁶

¹Max-Planck-Institut für Plasmaphysik ²University of Greifswald, ³Australian National University, Canberra, Australia ⁴Forschungszentrum Jülich⁵ University of Wisconsin, Madison, ⁶Wigner Institute, ⁷Princeton Plasma Physics Laboratory, ⁸University of Cagliari, ⁹Oak Ridge National Laboratory, ¹⁰Los Alamos National Laboratory, ¹¹National Institute for Fusion Science, ¹²Auburn University ¹³ Laboratory for Plasma Physics, ERM/KMS Brussels¹⁴ Ghent University

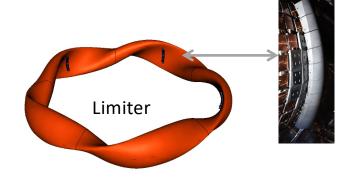
¹⁵100 Impasse des Houllières, ZA Le Pontet, Meyreuil, France. ¹⁶ CEA, IRFM, Saint Paul-lez-Durance, France

This work was partially funded by the U.S. Department of Energy under grant DE-SC0014210

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

02.11.18

Overview



- The path forward for W7-X in terms of upgrades to the PFCs
- The W7-X island divertor concept
- Heat load patterns during attached operation:
 - Spatial patterns
 - Scaling of heat fluxes
- Detachment at lower power, before boronization
- Effects of boronization
- Detachment at higher power, after boronization
- Summary

Successive upgrades to plasma-facing components

OP 1.1: 2015 - 2016

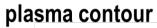
Graphite limiter configuration

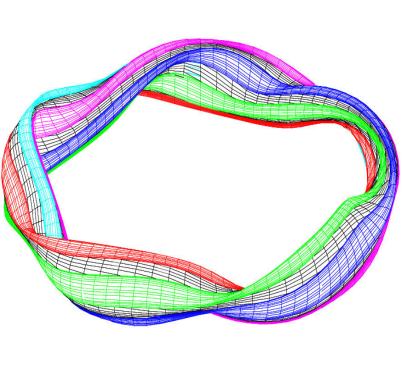
P < 4.3 MW achieved $\int Pdt \le 4$ MJ achieved

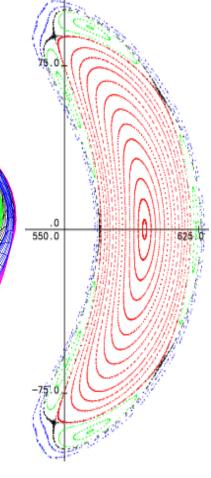
OP 1.2: 2017 – 2018 Uncooled graphite divertor P \leq 7 MW achieved $\int Pdt \leq$ 200 MJ achieved

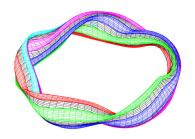
T. Sunn Pedersen et al., IAEA-FEC Meeting, Ahmedabad, India

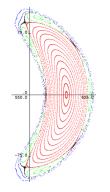
OP 2: 2021 ...

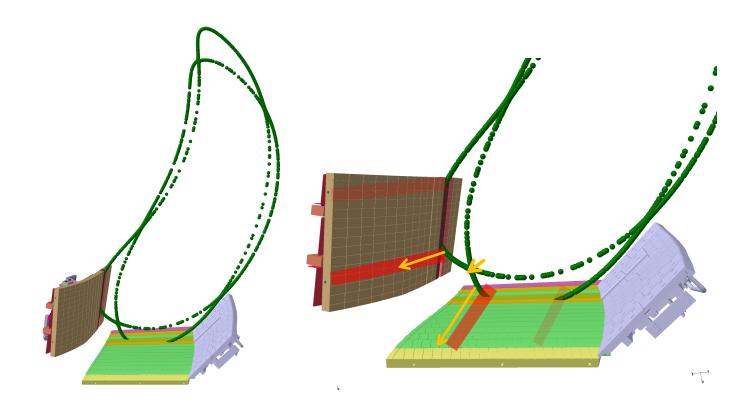

Actively cooled CFC divertor $P_{cw} \sim 10 \text{ MW } (30 \text{ mins})$ Divertor $\Gamma \leq 10 \text{ MW/m}^2$ $\int P \, dt \leq 18000 \text{ MJ}$

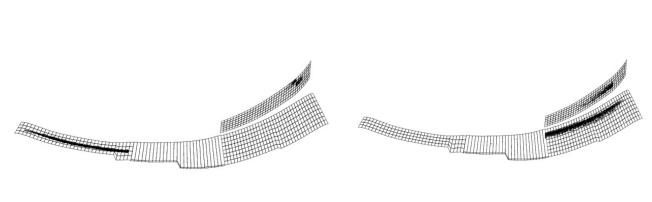

Introducing the W7-X island divertor

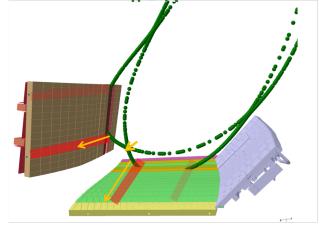




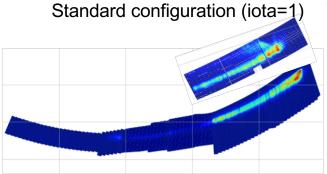

Introducing the W7-X island divertor



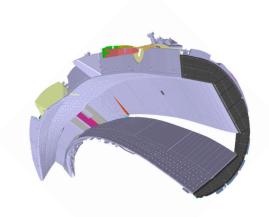


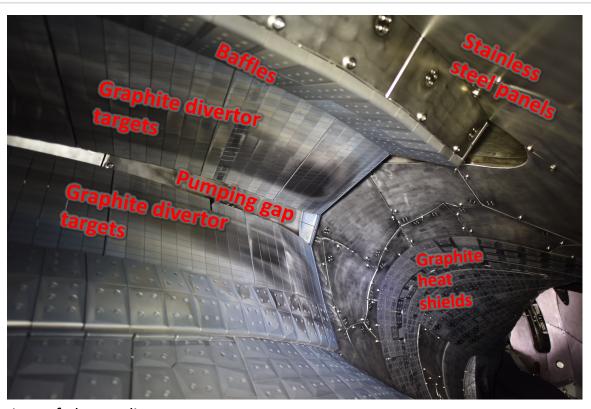


Divertor heat load patterns for attached plasmas

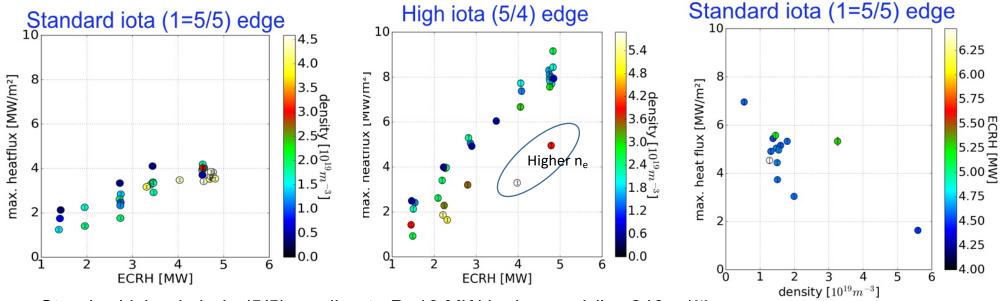


High-iota configuration (iota=5/4)


Heat load patterns generally as expected,
See also M Jakubowski et al.,
this conference

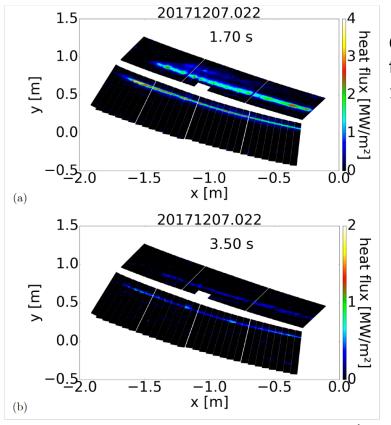

For strike line motion and general issues with those: see J. D. Lore et al., this conference

A look onto a divertor unit halfway through OP1.2



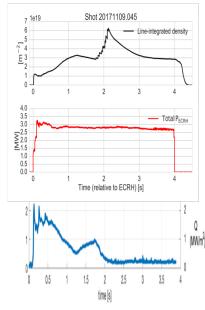
- View into torus after OP1.2a: Visible signs of plasma-divertor contact
- The OP1.2 test divertors are uncooled, robust against overload ⇒ Ideal testbed for later operation
 with the water-cooled divertor which has a 10 MW/m² heat flux design specification

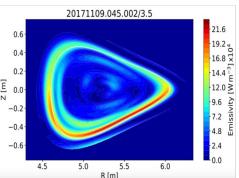
Attached divertor operation: heat loads are a function of density


- Standard island chain (5/5): scaling to P=10 MW looks good (L_c~240 m)^[1]
- High iota island chain (5/4): Scaling presents a challenge at low density $(L_c \sim 130 \text{ m})^{[1]}$
- Higher density features more desirable scaling
- Primarily due to increased radiation but also indicative of large wetted area (up to 1.5 m²)

[1] P. Sinha et al., Nucl. Fusion 58, 016027 (2017)

Full heat-flux detachment at high n_e, low P~3 MW

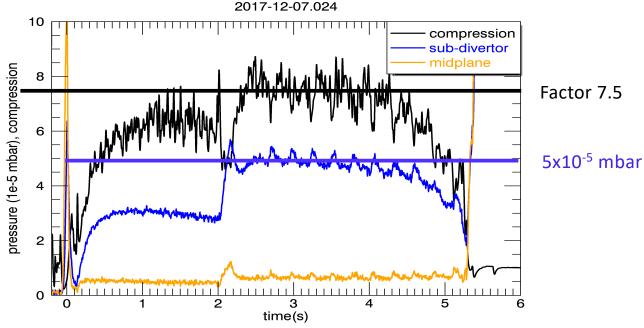




Complete detachment for t> 2 s on all 10 divertors (one shown)

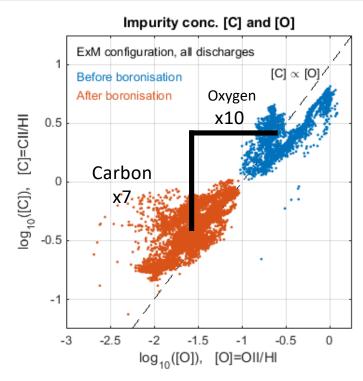
Heat flux essentially disappears from target for t>2 s, persisting until end of plasma heating at t=4 s t_E~100 ms rather constant for over 1 s

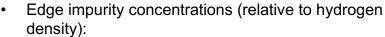
Heat flux derived from IR camera data


Increased radiation near the LCFS

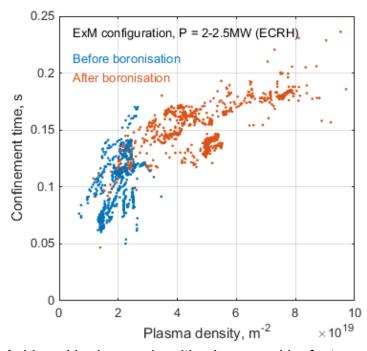
T. Sunn Pedersen et al., IAEA-FEC Meeting, Ahmedabad, India

But what about the particle exhaust (P~3 MW)?

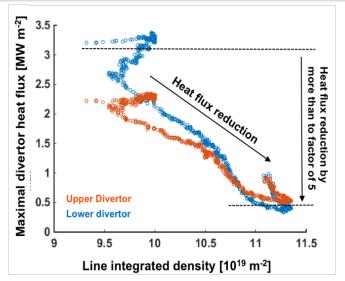


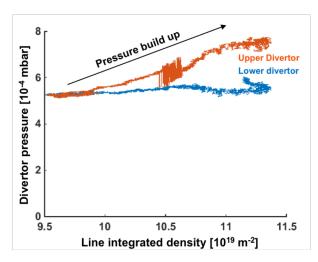

- For low-power detachment, the subdivertor neutral pressure reaches about 5x10⁻⁵ mbar
 - In OP1.2: 2x10⁴ l/s pumping rate (divertor turbopumps)
- The exhaust rate is therefore about 1 mbar-liter/s~2x10¹⁹ particles/s
- Compression ratio: About 7.5
- Expected/hoped: compression ratios of more than 30, subdivertor pressure 5-10x10⁻⁴ mbar

After boronization: Reduced edge radiation, higher density

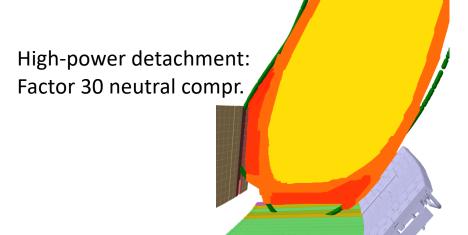


- Oxygen reduced by a factor of 10 (or a lot more, in some cases)
- Carbon reduced by about a factor of 7


- Achieved hydrogen densities increased by factor >3:
 - avoidance of MARFE-like phenomena
- Achieved confinement times increased by ~60%
 - consistent with the increased density ($\tau_{E,ISS04} \propto n^{0.54}$), so:
- Boronization was not the direct cause of increased confinement
 - Plasma core generally clean before and after boronization


02.11.18

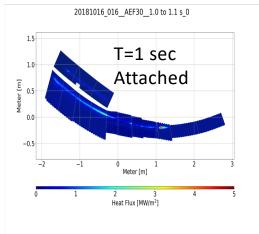
Post-boronization detachment: Efficient exhaust

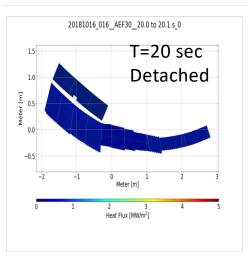

- High-density, higher-power (5-6 MW) detachment achieved after boronization
- Strong heat flux reduction
- Triggered in narrow density range in both upper and lower divertors
- Strong neutral compression now (x30):
 - $p_n = 5$ to $8x10^{-4}$ mbar now ($p_n = 0.5x10^{-4}$ mbar for low-power detachment)
- All divertors detach but a somewhat stronger neutral compression (30%) is seen in the upper divertors.
- The particle removal rate is ~13 mbar-liter/s~2.6x10²⁰ particles/s projects well to OP2 with divertor cryo-pumps and a 4x higher pumping rate:
 - Should result in 10²¹ particles/s removed about the amount expected to be needed

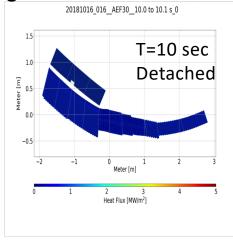
Why the difference in neutral compression?

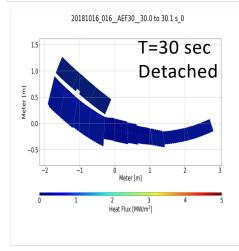
Low-power detachment:
Factor 7 neutral compr.

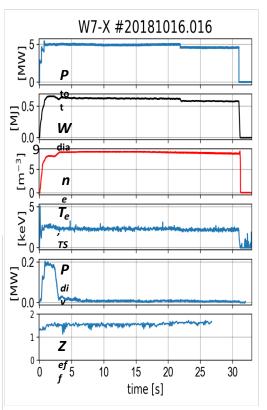
- Hypothesis (illustrated with cartoons):
 - At low power, the plasma "runs out of energy" near the edge and radiates its energy away before it arrives at the island and the divertor
 - Oxygen and carbon act as "radiating mantle"
 - Therefore, the plasma does not "plug" the hole neutrals can escape divertor region
 - See also Florian Effenberg's talk directly following this one using neon to trigger the same physics
 - At high power, after boronization, the plasma radiation cooling and condensation occurs further out, in the divertor
 - Therefore the plasma effectively "plugs the hole" neutrals cannot escape divertor region (as designed...!)
- The surprising thing is that also the low-power detachment can be stable without feedback stabilization.

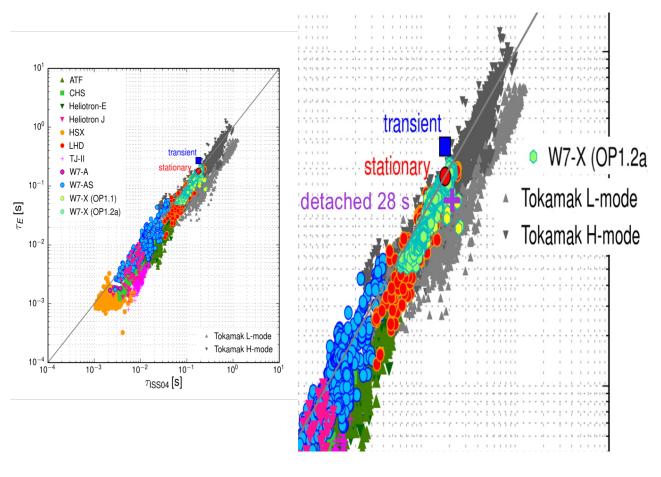

T. Sunn Pedersen et al., IAEA-FEC Meeting, Ahmedabad, India


W7-X divertor works: Efficient particle exhaust, stable detachment






32 second discharge from last week, detached for the last 28 seconds


Meeting, Ahmedabad, India

- Pulse terminates as preprogrammed – could have been extended
- Energy confinement time ~120 ms constant
- Efficient exhaust
 - Divertor neutral pressure ~ 6-7x10⁻⁴ mbar
- Low impurity content

W7-X in general has very good confinement: 28-second detached discharge had H-L mode confinement

- W7-X discharges lie with the same range that regular tokamak H-mode discharges do.
- The 28 sec detached discharge has confinement between H- and L-mode
- The triple product record shot (labeled "transient" here) lies above the H-mode scaling, and had reduced turbulent fluctuations (re. Th. Klinger overview talk)

Summary

First results with the W7-X island divertor were very successful

- The divertor heat load patterns were generally as expected
- In attached operation, we observe large wetted areas and acceptable heat fluxes:
 - Projects well to future operation with water-cooled divertor
 - An indication of the benefits of long connection lengths
- Stable detachment was achieved (two varieties)
 - Low-power, volumetric, limited particle exhaust
 - · High-power, with high neutral compression, efficient particle exhaust
 - All divertors detached stably for 28 seconds @ 5MW could have lasted much longer

Boronization was key; it enabled:

- Strong reduction of oxygen and carbon in SOL
- Stable high hydrogen density operation
- Access to detachment with efficient exhaust