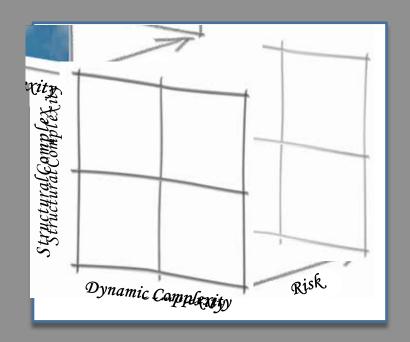
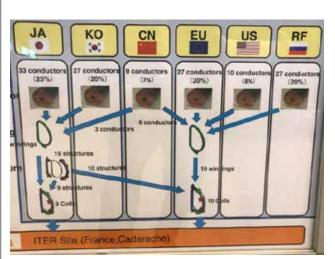


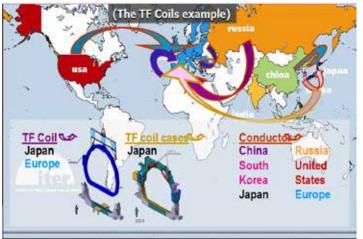
Table of Contents

- ☐ ITER Project Complexity
- □ PM: Where do we come from?
- Addressing Structural Complexity
- □ Addressing Dynamic Complexity
- □ Addressing Issues and Risks
- □ Addressing Complexity holistically
- □ Summary


J.	TEF	R P	roj	ject	Com	plexity	y
				,		-	

- □ PM: Where do we come from?
- □ Addressing Structural Complexity
- Addressing Dynamic Complexity
- □ Addressing Issues and Risks
- □ Addressing Complexity holistically
- □ Summary




ITER Project Complexity

- ☐ Structural Complexity
- **□ Dynamic Complexity**
- □ Risk

Global Supply Chain

- Science vs muusmar
- Non-nuclear vs nuclear

Governance
Structure(s)

State Atomic Energy Corporation Rosatom

KO-DA

IN-DA

ITER ITER Organization Members In-Cash Contributions ¥\$€ Delivery of In-Kind Contributions **Domestic kIUA** Agencies value Components **Suppliers**

- Science vs muusurar
- Non-nuclear vs nuclear

Global

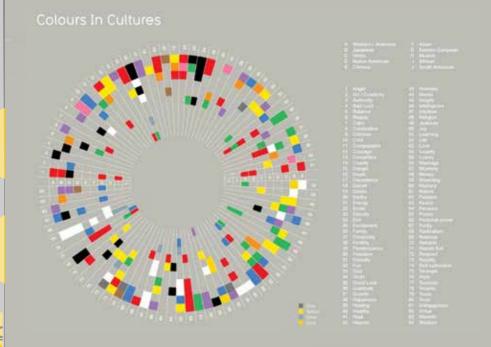
Supply Chain

DAE

EURATOM

Governance Structure(s)

Global Supply Chain


- ☐ ITER Agreement set up a structure where IO as the overall integrator does not have organizational control over the Domestic Agencies (component suppliers)
 - □ Domestic Agencies have their own reporting and financial/ budgetary structure
 - □ Drivers for IO (schedule progress, functional performance, overall cost optimization) and DAs (individual entity cost reduction) are not always aligned
- Science vs muusurar
- Non-nuclear vs nuclear/

Cultures:

A380: 1 Member ISS: 5 Members ITER: 7 Members

Governance Structure(s)

Global Supply Chain

- Science vs muusmar

- Non-nuclear vs nuclear

Cultures:

A380: 1 Member ISS: 5 Members

ITER: 7 Members

Governance Structure(s)

Global Supply Chain

Drawings:

A380: 79,000 ITER: 250,000

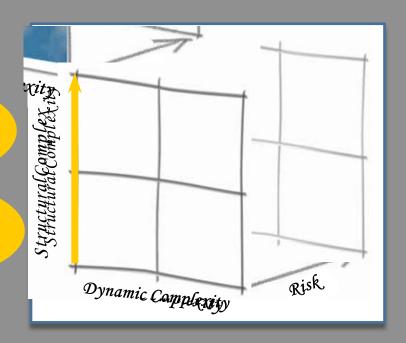
Cost of Development (ca.)

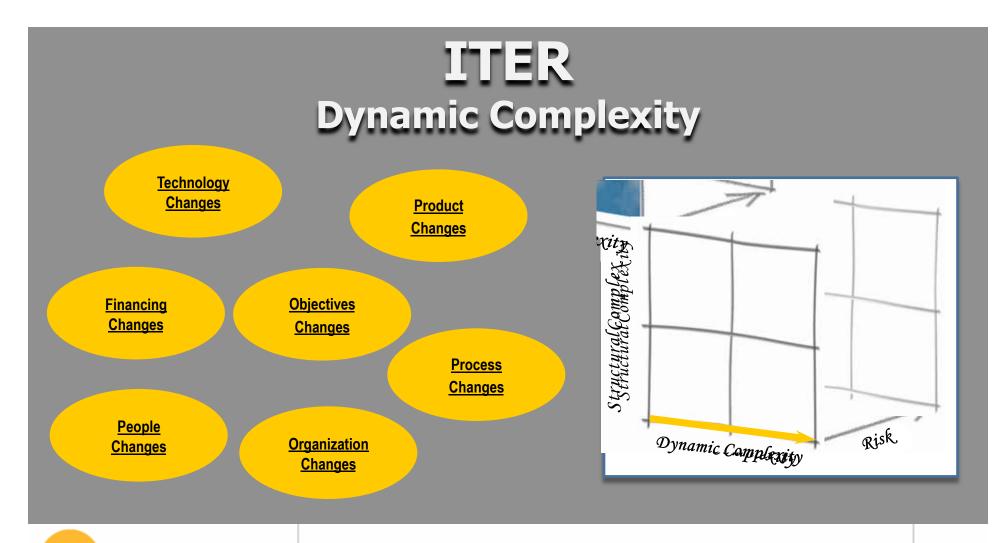
ISS: 100 €bn ITER: 20 €bn

Parts:

747: 5·10⁶ ITER: 10·10⁶

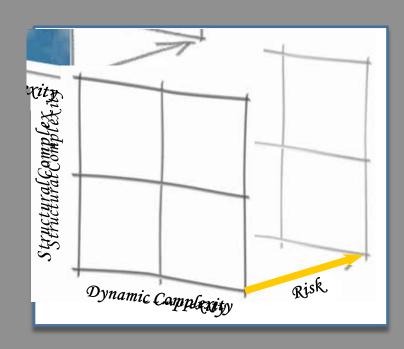
Cultures:


- Science vs industrial
- Non-nuclear vs nuclear

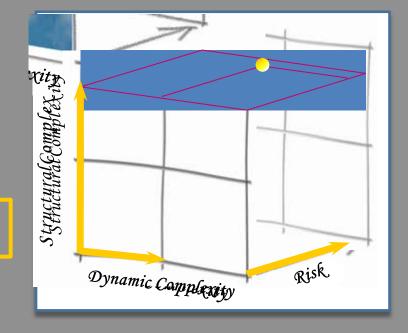

Project FTEs:

A380: 6,000 ITER: 3,000

System of Systems

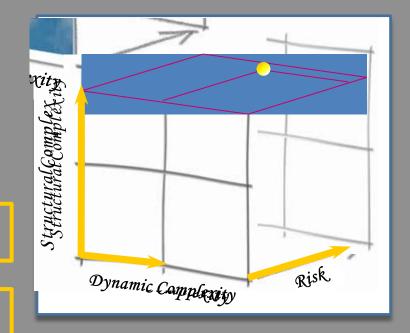

Interface Challenges and Systems

ITER Risks (and Issues)



ITER Project Complexity

- **High Structural Complexity**
- **Medium Dynamic Complexity**
- **More than medium Risk**


Significant level of Complexity!

ITER Project Complexity

- **High Structural Complexity**
- **Medium Dynamic Complexity**
- **More than medium Risk**

- Significant level of Complexity!
- **How to manage this Complexity?**

	LT	ER F	rojec	ct Co	mpl	exity
--	----	------	-------	-------	-----	-------

- □ PM: Where do we come from?
- □ Addressing Structural Complexity
- Addressing Dynamic Complexity
- □ Addressing Issues and Risks
- □ Addressing Complexity holistically
- □ Summary

<2013

Excerpt

- ☐ As a result of the complex governance setup, award of fabrication contracts in the past, when design was still evolving, was
 - □ made further complex by extremely complicated breakdown of components scope between multiple DAs and IO, resulting in complex interfaces and uncertain cost boundaries between DAs and IO
 - □ lacking decision speed as there was no central funding mechanism for compensating impact of design changes to be cascaded to the DAs

ITER Management Assessment ("Madia Report")

- lack of a strong Project Management culture
- unrealistic schedule
- inadequate Systems Engineering and Design Integration
- a stove-piped organizational structure and inefficient management organization
- lack of a strong nuclear safety culture
- lack of effective IO-DA decision-making

ITER Management Assessment ("Madia Report")

- lack of a strong Project Management culture
- unrealistic schedule
- inadequate Systems Engineering and Design Integration
- a stove-piped organizational structure and inefficient management organization
- lack of a strong nuclear safety culture
- lack of effective IO-DA decision-making

Massive improvements required to project manage ITER

Excerpt

Action Plan presented by elect DG B. Bigot

- ☐ Integrate IO and DAs under the leadership of the DG, while respecting the ITER Agreement:
 - ☐ Provide DG with the global and ultimate technical responsibility, with DAs to participate in all key decision making processes
 - ☐ Introduce an Executive Project Board
 - □ Not only reinforce the Project Control Office and establish a Central Integration Office (CIO), but also strengthen their ties to their counterparts in the DAs
 - □ Create integrated IO/DA(s) project teams

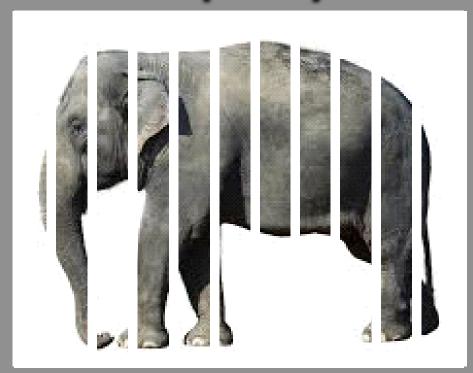
Excerpt

Action Plan presented by elect DG B. Bigot

- Provide DG with a central fund to finance technical changes initiated by the IO, so that technical decisions in the overall interest of the project can be taken much faster
- ☐ Implement powerful coordination tools for establishing a nuclear project culture
- □ Develop a project culture based on mutual trust, project loyalty and team spirit
- ☐ Implement a new organization at the IO in support of the above
- ☐ Hire senior managers with industrial background in managing complex projects

Excerpt

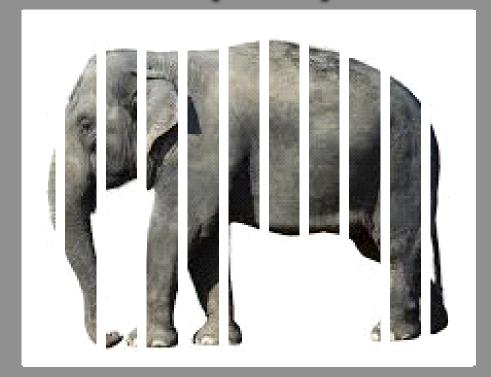
Action Plan presented by elect DG B. Bigot


- Provide DG with a central fund to finance technical changes initiated by the IO, so that technical decisions in the overall interest of the project can be taken much faster
- ☐ Implement powerful coordination tools for establishing a nuclear project culture
- □ Develop a project culture based on mutual trust, project loyalty and team spirit
- ☐ Implement a new organization at the IO in support of the above
- ☐ Hire senior managers with industrial background in managing complex projects

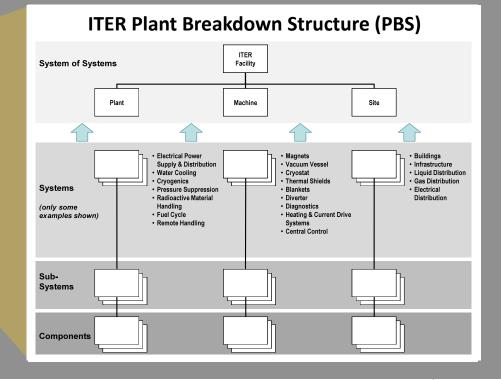
Action Plan fully supported by ITER Council and DAs

Table of Contents

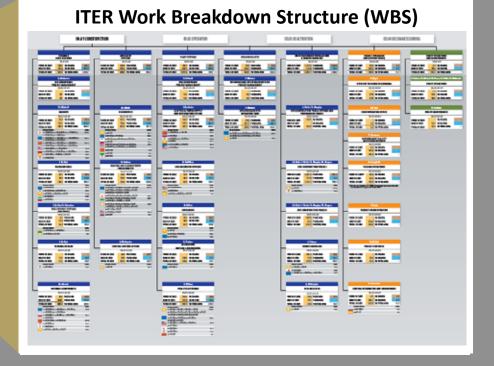
- **□** ITER Project Complexity
- □ PM: Where do we come from?
- □ Addressing Structural Complexity
- □ Addressing Dynamic Complexity
- □ Addressing Issues and Risks
- □ Addressing Complexity holistically
- □ Summary



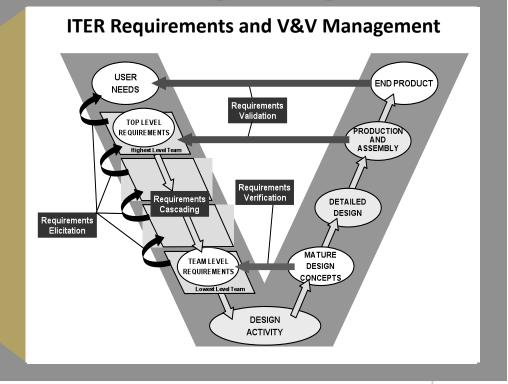
→ Slicing the Elephant



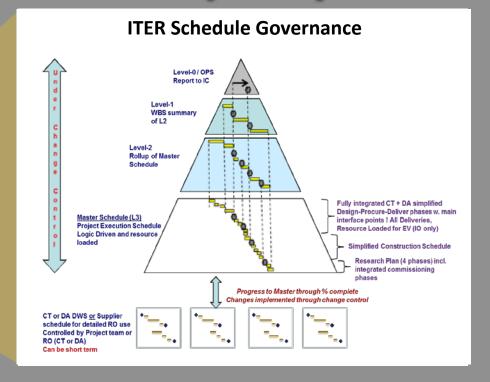
- ☐ Break down of content along different dimensions, e.g.
 - □ System
 - □ Work
 - □ Requirements / V&V
 - ☐ Schedule
 - ☐ Site
 - □ Organization



- ☐ Break down of content along different dimensions, e.g.
 - □ System

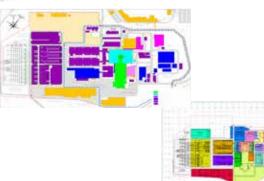


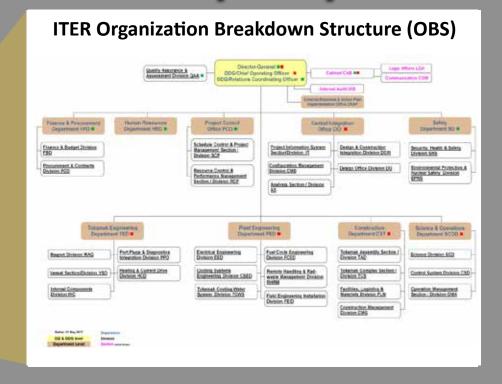
- □ Break down of content along different dimensions, e.g.
 - **System**
 - □ Work



- ☐ Break down of content along different dimensions, e.g.
 - □ System
 - □ Work
 - **□** Requirements

- ☐ Break down of content along different dimensions, e.g.
 - □ System
 - □ Work
 - **□** Requirements
 - □ Schedule

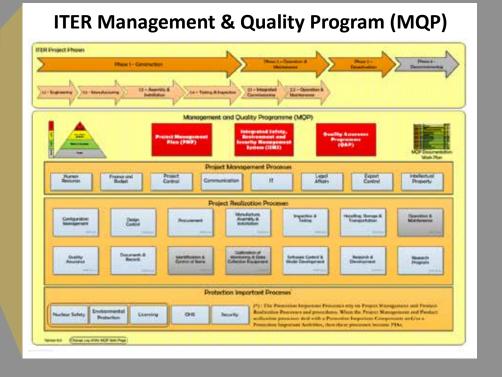



- ☐ Break down of content along different dimensions, e.g.
 - □ System
 - □ Work
 - □ Requirements
 - **□** Schedule
 - ☐ Site


- □ Break down of content along different dimensions, e.g.
 - **System**
 - □ Work
 - Requirements
 - Schedule
 - ☐ Site
 - **Organization**

- ☐ 'Slicing the Elephant' requires tight management and control of I³
 - ☐ Interfaces managed through Interface Sheets
 - ☐ Interdependencies managed through schedule governance and customer-supplier relationship monitoring tools
 - ☐ Interchangeabilities managed through Configuration Management

Table of Contents


- **□** ITER Project Complexity
- ☐ PM: Where do we come from?
- □ Addressing Structural Complexity
- □ Addressing Dynamic Complexity
- □ Addressing Issues and Risks
- □ Addressing Complexity holistically
- □ Summary

☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner

- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - **Processes**

- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - Processes

- □ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - **Processes**

'Business Operating System' now well defined

- □ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control

Baselines

- ☐ Technical Baseline
- ☐ Updated Cost and Schedule Baseline approved 'ad referendum' in November 2016
 - ☐ after review by an ITER Council Working Group on the Independent Review of the Updated Long Term Schedule and Human Resources (ICRG)
 - □ based on best technically achievable and riskreducing '4-Stage Approach' from FP (Dec '25) to DT operations (Dec '35)
 - on purpose without initial schedule or cost contingency

- Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control

Baselines

- Technical Baseline
- ☐ Updated Cost and Schedule Baseline approved 'ad referendum' in November 2016
 - ☐ after review by an ITER Council Working Group on the Independent Review of the Updated Long Term Schedule and Human Resources (ICRG)
 - □ based on best technically achievable and riskreducing '4-Stage Approach' from FP (Dec '25) to DT operations (Dec '35)

⇒ Baselines serve as references against which change is controlled

- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control

Decision Making Hierarchy

Control Level	Decision Authority	Topics for Decision		To be Consulted
		Topics (Examples)	@ Level	
0	IC ASN	Project Baseline Document(s)	0	STAC MAC
		IROs to Project Baseline(s)	0	
		Baseline Change Requests	0	
		• IO-OBS	1-n	
		Generally: Items which are depicted in the Article 6 of the ITER Agreement		
ı	IO-DG	Project Baseline Document(s)	1	EPB
		IROs to Project Baseline(s)	1	
		Baseline Change Requests	1	
		Reserve Fund allocation		
п	IO-DDG	Project Baseline Document(s)	2	CCB-II
		IROs to Project Baseline(s)	2	
		Baseline Change Requests	2	
Ш	Various*	Project Baseline Document(s)	3	CCB-III
		IROs to Project Baseline(s)	3	
		Baseline Change Requests	3	
		• PBS	1-n	
		• WBS	0-n	
		Changes which do not impact the Project Baseline		Potentially affected Stakeholders
IV	Various*	Ywithin the authority of a single organization, or organizational unit, with no impact on another organization, unit or system		Potentially affected Stakeholders

- □ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control

Decision Making Hierarchy

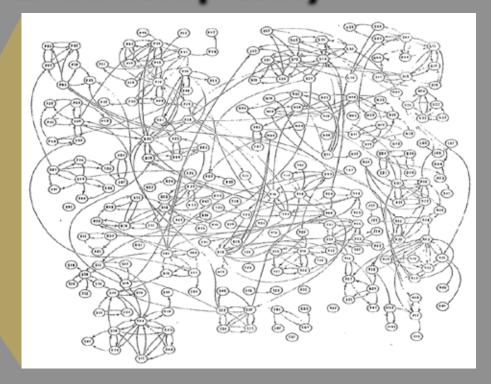
Control Level	I Decision Topics for Decision Authority		To be Consulted	
		Topics (Examples)	@ Level	
0	IC ASN	Project Baseline Document(s)	0	STAC MAC
		IROs to Project Baseline(s)	0	
		Baseline Change Requests	0	
		• 10-0BS	1-n	
	A311	Generally: Items which are depicted in the Article 6 of the ITER Agreement		IIIAO
_	IO-DG	Project Baseline Document(s)	1	EPB
		IROs to Project Baseline(s)	1	
		Baseline Change Requests	1	
		Reserve Fund allocation		
Ш	IO-DDG	Project Baseline Document(s)	2	CCB-II
		IROs to Project Baseline(s)	2	
		Baseline Change Requests	2	
=	Various*	Project Baseline Document(s)	3	CCB-III
		IROs to Project Baseline(s)	3	
		Baseline Change Requests	3	
		• PBS	1-n	
		• WBS	0-n	
		Changes which do not impact the Project Baseline		Potentially affected Stakeholders

Hundreds of Change Requests have been processed and implemented

- □ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control

Reserve Fund

- □ covers cost of IO-directed design/ scope changes post-March 2015
- **□** 1.05 Billion EUR in the Updated Baseline
- □ at the discretion of the DG, subject to EPB consultation
- □ ~ 29% used so far/ in pipeline


- Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - **Processes**
 - **Change Control**

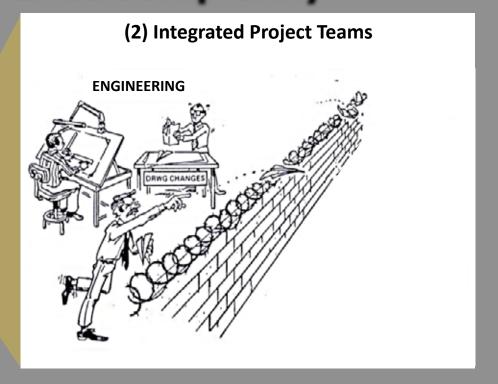
Reserve Fund

- □ covers cost of IO-directed design/scope changes post-March 2015
- **□** 1.05 Billion EUR in the Updated Baseline
- at the discretion of the DG, subject to EPB consultation
- □ ~ 29% used so far/ in pipeline

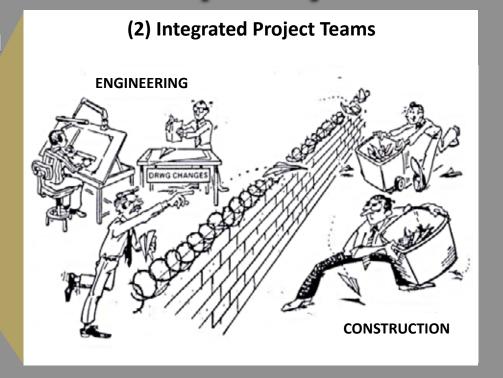
⇒ Speed of decision-making has been substantially increased

- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control
 - □ Effective Communication

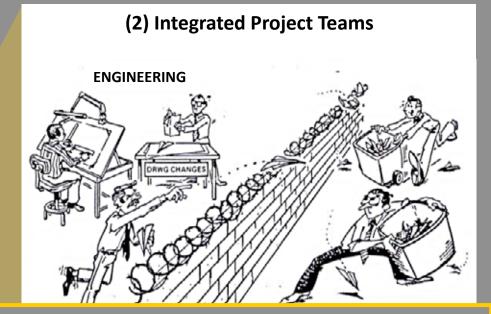
- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control
 - □ Effective Communication


- □ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control
 - □ Effective Communication

(1) Worldwide Connectivity

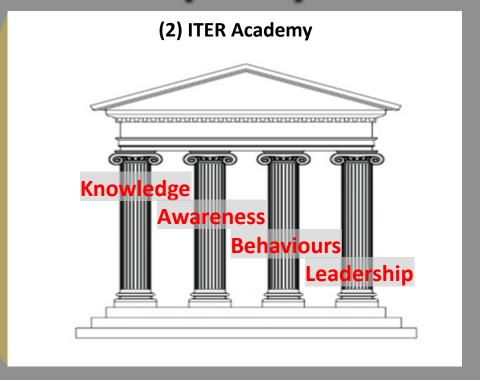

SMART Bridgit Server
Or
MS Lync
Connect
Virtual Obeya Room

⇒ Videoconferencing intensively used as 2nd best way of communication


- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control
 - □ Effective Communication

- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control
 - **☐** Effective Communication

- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control
 - □ Effective Communication


PTs introduced for a variety of deliverables (VV, BIPS, Cryo, TBM)

- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control
 - **□** Effective Communication
 - **□** Competences of People

(1) Experience-based People Selection

- □ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - **Processes**
 - **Change Control**
 - **Effective Communication**
 - **Competences of People**

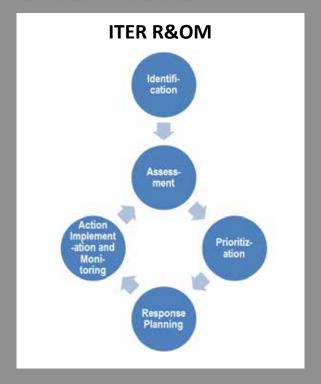
- ☐ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - □ Processes
 - □ Change Control
 - **☐** Effective Communication
 - **☐** Competences of People

(3) Annual Performance Assessment

- Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - Processes
 - □ Change Control
 - **☐** Effective Communication
 - **□** Competences of People

- □ Addressing Dynamic Complexity is all about responding to change in a controlled, yet agile manner.
 - Processes
 - □ Change Control
 - **☐** Effective Communication
 - **□** Competences of People

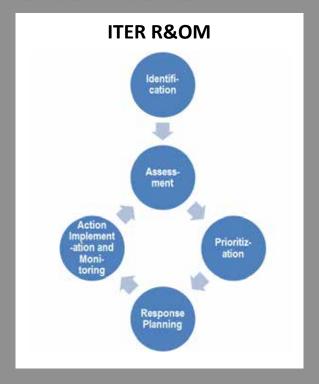
Effective Communication and People Competences vital for ITER


☐ ITER Pro	ject Comp	lexity
------------	-----------	--------

- □ PM: Where do we come from?
- □ Addressing Structural Complexity
- Addressing Dynamic Complexity
- □ Addressing Issues and Risks
- □ Addressing Complexity holistically
- □ Summary

Today Addressing Issues and Risks

- ☐ ITER Project Baseline comes without any initial contingencies for cost and schedule
- ☐ The Project has to identify and generate opportunities to manage issues and risks



Today Addressing Issues and Risks

- ☐ ITER Project Baseline comes without any initial contingencies for cost and schedule
- ☐ The Project has to identify and generate opportunities to manage issues and risks


→ Holistic IRO Management

Today Addressing Issues and Risks

- ☐ ITER Project Baseline comes without any initial contingencies for cost and schedule
- ☐ The Project has to identify and generate opportunities to manage issues and risks
 - **Holistic IRO Management**
 - Professional, but classical approach

Table of Contents

- □ ITER Project Complexity
- ☐ PM: Where do we come from?
- □ Addressing Structural Complexity
- □ Addressing Dynamic Complexity
- □ Addressing Issues and Risks
- □ Addressing Complexity holistically
- □ Summary

Today Systems Engineering and Design Integration

- **CIO** established to systematically implement
 - □ Systems Engineering (Design Control)
 - □ Configuration Management
 - **□** Design Integration

across the Project.

- Transversal functions, such as nuclear integration and functional analysis, have been clearly defined and systematically controlled since 2017
- Methods, processes, tools now are industry state-of-the-art
 - Implementation Plans defined and being executed

TodayProduct Lifecycle Management (PLM) System

- □ Approval for introduction of PLM system in 2015
- □ Tool customization during 2016-2017
- □ Deployment of system kicked-off in 2017
- □ Initially used in support of Configuration Management

Backbone for managing technical data during ITER lifetime set up

TodayProject Status Reporting

- Overall Project status periodically reported to EPB and IC, thereby providing the basis for recoveries and risk mitigations
- ☐ Typical status report includes:
 - □ Overall status of Project progress, including % complete
 - □ Status of High Level Project Milestones
 - □ Major risks and challenges
 - ☐ Earned Value Management indicators SPI and CPI
 - **□** KPIs for transversal process performance

A robust mechanism for monitoring and reporting is in place

Today External Audits

- ☐ Since the Madia Report, ITER's capabilities to manage the Project professionally have been audited at a variety of occasions, with more audits yet to come:
 - ☐ Bi-annual Management Assessments (2015, 2017)
 - ☐ ICRG 2016
 - ☐ Risk Management April 2017
 - ☐ Interface Freeze September 2017
 - □ Configuration Management August 2018
- □ Strong US representation in external audits/ validations
 - **⇒** External Audits provided much support towards better PM/SE

Table of Contents

- □ ITER Project Complexity
- ☐ PM: Where do we come from?
- □ Addressing Structural Complexity
- □ Addressing Dynamic Complexity
- □ Addressing Issues and Risks
- □ Addressing Complexity holistically
- □ Summary

Summary General

- ☐ Thanks to substantial improvements implemented since 2015, the ITER Project is under control from a technical, cost and schedule perspective
- □ Deviations from baselines are constantly monitored and where necessary recovery or mitigation measures are implemented
- □ Project status is reported regularly in a transparent manner to EPB and IC
- □ Further evolutions in managing ITER are being implemented

Summary General

- ☐ Thanks to substantial improvements implemented since 2015, the ITER Project is under control from a technical, cost and schedule perspective
- □ Deviations from baselines are constantly monitored and where necessary recovery or mitigation measures are implemented
- □ Project status is reported regularly in a transparent manner to EPB and IC
- □ Further evolutions in managing ITER are being implemented
 - **⇒** Significant progress made, confirmed by external audits

Summary General

- ☐ Thanks to substantial improvements implemented since 2015, the ITER Project is under control – from a technical, cost and schedule perspective
- Deviations from baselines are constantly monitored and where necessary recovery or mitigation measures are implemented
- Project status is reported regularly in a transparent manner to EPB and IC
- Further evolutions in managing ITER are being implemented
 - Significant progress made, confirmed by external audits
 - But more work needed to reach full adequacy of capabilities

Summary Nuclear Safety

- □ Enormous progress achieved by IO, together with the DAs, in persuading ASN (the local Nuclear Safety Regulator in France) to follow a flexible approach for regulating nuclear fusion versus fission without compromising safety requirements
- □ Demonstrating to ASN robustness of
 - □ propagation of safety requirements across distributed supply chain
 - □ compliance with requirements across supply chain
- Ongoing work with ASN to demonstrate safety of FOAK systems like detritiation systems

Summary Nuclear Safety

- □ Enormous progress achieved by IO, together with the DAs, in persuading ASN (the local Nuclear Safety Regulator in France) to follow a flexible approach for regulating nuclear fusion versus fission without compromising safety requirements
- Demonstrating to ASN robustness of
 - □ propagation of safety requirements across distributed supply chain
 - □ compliance with requirements across supply chain
- ☐ Ongoing work with ASN to demonstrate safety of FOAK systems like detritiation systems
 - **□ ITER** sets the scene for regulations in nuclear fusion

Thank You!

www.iter.org

